These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 14636976)

  • 1. Aspartic proteases from Plasmodium chabaudi: a rodent model for human malaria.
    Martins TM; Novo C; do Rosário VE; Domingos A
    Acta Trop; 2003 Dec; 89(1):1-12. PubMed ID: 14636976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activity and inhibition of the food vacuole plasmepsin from the rodent malaria parasite Plasmodium chabaudi.
    Martins TM; Domingos A; Berry C; Wyatt DM
    Acta Trop; 2006 Feb; 97(2):212-8. PubMed ID: 16329985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aspartic proteinase from the rodent parasite Plasmodium berghei as a potential model for plasmepsins from the human malaria parasite, Plasmodium falciparum.
    Humphreys MJ; Moon RP; Klinder A; Fowler SD; Rupp K; Bur D; Ridley RG; Berry C
    FEBS Lett; 1999 Dec; 463(1-2):43-8. PubMed ID: 10601635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 43 kDa recombinant plasmepsin elicits immune response in mice against Plasmodium berghei malaria.
    Pirta C; Sharma NN; Banyal HS
    Acta Parasitol; 2016 Jan; 61(1):102-7. PubMed ID: 26751879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence homology and structural analysis of plasmepsin 4 isolated from Indian Plasmodium vivax isolates.
    Rawat M; Vijay S; Gupta Y; Dixit R; Tiwari PK; Sharma A
    Infect Genet Evol; 2011 Jul; 11(5):924-33. PubMed ID: 21382523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmepsin 4, the food vacuole aspartic proteinase found in all Plasmodium spp. infecting man.
    Dame JB; Yowell CA; Omara-Opyene L; Carlton JM; Cooper RA; Li T
    Mol Biochem Parasitol; 2003 Aug; 130(1):1-12. PubMed ID: 14550891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates.
    Na BK; Lee EG; Lee HW; Cho SH; Bae YA; Kong Y; Lee JK; Kim TS
    Korean J Parasitol; 2004 Jun; 42(2):61-6. PubMed ID: 15181345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum.
    Klemba M; Goldberg DE
    Mol Biochem Parasitol; 2005 Oct; 143(2):183-91. PubMed ID: 16024107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II.
    Francis SE; Banerjee R; Goldberg DE
    J Biol Chem; 1997 Jun; 272(23):14961-8. PubMed ID: 9169469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of plasmepsins I and II aspartic proteases of the Plasmodium falciparum digestive vacuole.
    Luker KE; Francis SE; Gluzman IY; Goldberg DE
    Mol Biochem Parasitol; 1996 Jul; 79(1):71-8. PubMed ID: 8844673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and characterisation of plasmepsin I from Plasmodium falciparum.
    Moon RP; Tyas L; Certa U; Rupp K; Bur D; Jacquet C; Matile H; Loetscher H; Grueninger-Leitch F; Kay J; Dunn BM; Berry C; Ridley RG
    Eur J Biochem; 1997 Mar; 244(2):552-60. PubMed ID: 9119023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the activation of P. vivax plasmepsin.
    Bernstein NK; Cherney MM; Yowell CA; Dame JB; James MN
    J Mol Biol; 2003 Jun; 329(3):505-24. PubMed ID: 12767832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-specific immunity may drive adaptive polymorphism in the merozoite surface protein 1 of the rodent malaria parasite Plasmodium chabaudi.
    Cheesman S; Tanabe K; Sawai H; O'Mahony E; Carter R
    Infect Genet Evol; 2009 Mar; 9(2):248-55. PubMed ID: 19121414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations.
    Valiente PA; Batista PR; Pupo A; Pons T; Valencia A; Pascutti PG
    Proteins; 2008 Nov; 73(2):440-57. PubMed ID: 18442137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New class of small nonpeptidyl compounds blocks Plasmodium falciparum development in vitro by inhibiting plasmepsins.
    Jiang S; Prigge ST; Wei L; Gao Ye ; Hudson TH; Gerena L; Dame JB; Kyle DE
    Antimicrob Agents Chemother; 2001 Sep; 45(9):2577-84. PubMed ID: 11502532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naturally-occurring and recombinant forms of the aspartic proteinases plasmepsins I and II from the human malaria parasite Plasmodium falciparum.
    Tyas L; Gluzman I; Moon RP; Rupp K; Westling J; Ridley RG; Kay J; Goldberg DE; Berry C
    FEBS Lett; 1999 Jul; 454(3):210-4. PubMed ID: 10431809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei.
    Liu P; Robbins AH; Marzahn MR; McClung SH; Yowell CA; Stevens SM; Dame JB; Dunn BM
    PLoS One; 2015; 10(10):e0141758. PubMed ID: 26510189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses.
    McGillewie L; Soliman ME
    Proteins; 2015 Sep; 83(9):1693-705. PubMed ID: 26146842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from Plasmodium falciparum.
    Asojo OA; Gulnik SV; Afonina E; Yu B; Ellman JA; Haque TS; Silva AM
    J Mol Biol; 2003 Mar; 327(1):173-81. PubMed ID: 12614616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and tissue-specific expression patterns of the Plasmodium chabaudi cir multigene family.
    Ebbinghaus P; Krücken J
    Malar J; 2011 Sep; 10():272. PubMed ID: 21929749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.