These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Polymer coating for hemoperfusion over activated charcoal. Hasirci N; Akovali G J Biomed Mater Res; 1986 Sep; 20(7):963-70. PubMed ID: 3760012 [TBL] [Abstract][Full Text] [Related]
3. Surface biocompatible modification of polypropylene by entrapment of polypropylene-block-poly(vinylpyrrolidone). Xu M; Qiu J; Lin Y; Shi X; Chen H; Xiao T Colloids Surf B Biointerfaces; 2010 Oct; 80(2):200-5. PubMed ID: 20598863 [TBL] [Abstract][Full Text] [Related]
4. Oxygen permeability of carbon-surfaced microporous membranes. Borovetz HS; Mateer DD; Hardesty RL; Haubold AD J Biomed Mater Res; 1980 Mar; 14(2):145-54. PubMed ID: 7358742 [TBL] [Abstract][Full Text] [Related]
5. A hydrophilic plasma polymerized film composite with potential application as an interface for biomaterials. Marchant RE; Johnson SD; Schneider BH; Agger MP; Anderson JM J Biomed Mater Res; 1990 Nov; 24(11):1521-37. PubMed ID: 2279984 [TBL] [Abstract][Full Text] [Related]
6. Surface modification of polymeric biomaterials by albumin grafting using h-irradiation. Kamath KR; Park K J Appl Biomater; 1994; 5(2):163-73. PubMed ID: 10147177 [TBL] [Abstract][Full Text] [Related]
7. Novel membranes and surface modification able to activate specific cellular responses. De Bartolo L; Morelli S; Piscioneri A; Lopez LC; Favia P; d'Agostino R; Drioli E Biomol Eng; 2007 Feb; 24(1):23-6. PubMed ID: 16914370 [TBL] [Abstract][Full Text] [Related]
8. Rising to the surface: the technology of polymeric surfaces on biomaterials. Williams D Med Device Technol; 1998 Oct; 9(8):6-8, 10, 12. PubMed ID: 10186991 [TBL] [Abstract][Full Text] [Related]
9. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Sagnella S; Mai-Ngam K Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667 [TBL] [Abstract][Full Text] [Related]
10. [The research advancement and the application foreground of 2-methacryloyloxyethyl phosphorylcholine polymer membranes]. Wang C; Wang Z; Cao L; Jiang P; Guo C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):470-3. PubMed ID: 17591285 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence measurements on functionalized polymer surfaces--problems and troubleshooting. Hoffmann K; Mix R; Resch-Genger U; Friedrich JF Ann N Y Acad Sci; 2008; 1130():28-34. PubMed ID: 18596328 [TBL] [Abstract][Full Text] [Related]
12. UV-ozone modification of plasma-polymerised acetonitrile films for enhanced cell attachment. Davidson MR; Mitchell SA; Bradley RH Colloids Surf B Biointerfaces; 2004 Apr; 34(4):213-9. PubMed ID: 15261060 [TBL] [Abstract][Full Text] [Related]
13. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Nakabayashi N; Iwasaki Y Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384 [TBL] [Abstract][Full Text] [Related]
14. Ethylcellulose perfluorobutyrate: a highly non-thrombogenic fluoropolymer for gas exchange membranes. Petersen RJ; Rozelle LT Trans Am Soc Artif Intern Organs; 1975; 21():242-8. PubMed ID: 1145996 [TBL] [Abstract][Full Text] [Related]
15. Physical adsorption of human thrombomodulin (ART-123) onto polymeric biomaterials for developing an antithrombogenic blood-contacting material. Matsusaki M; Omichi M; Maruyama I; Akashi M J Biomed Mater Res A; 2008 Jan; 84(1):1-9. PubMed ID: 17584906 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility of polysulfone I. Surface modifications and characterizations. Khang G; Lee HB; Park JB Biomed Mater Eng; 1995; 5(4):245-58. PubMed ID: 8785509 [TBL] [Abstract][Full Text] [Related]
17. Surface hydrophilisation and antibacterial functionalisation for microporous polypropylene membranes. Yang YF; Wan LS; Xu ZK Water Sci Technol; 2010; 61(8):2053-60. PubMed ID: 20389003 [TBL] [Abstract][Full Text] [Related]
18. Use of plasma polymerization for preparing silicone-coated membranes for possible use in blood oxygenators. Chawla AS Artif Organs; 1979 Feb; 3(1):92-6. PubMed ID: 435131 [TBL] [Abstract][Full Text] [Related]
19. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: adsorption of proteins from human plasma to copolymer/polyurethane blends. Tan J; Brash JL J Biomed Mater Res A; 2009 Jul; 90(1):196-204. PubMed ID: 18491394 [TBL] [Abstract][Full Text] [Related]
20. Glow discharge plasma treatment of polyethylene tubing with tetraglyme results in ultralow fibrinogen adsorption and greatly reduced platelet adhesion. Cao L; Sukavaneshvar S; Ratner BD; Horbett TA J Biomed Mater Res A; 2006 Dec; 79(4):788-803. PubMed ID: 16883583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]