BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

698 related articles for article (PubMed ID: 14637084)

  • 1. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy.
    Liu Y; Himes BT; Murray M; Tessler A; Fischer I
    Exp Neurol; 2002 Dec; 178(2):150-64. PubMed ID: 12504875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.
    Jin Y; Fischer I; Tessler A; Houle JD
    Exp Neurol; 2002 Sep; 177(1):265-75. PubMed ID: 12429228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubrospinal neurons fail to respond to brain-derived neurotrophic factor applied to the spinal cord injury site 2 months after cervical axotomy.
    Kwon BK; Liu J; Oschipok L; Teh J; Liu ZW; Tetzlaff W
    Exp Neurol; 2004 Sep; 189(1):45-57. PubMed ID: 15296835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats.
    Himes BT; Liu Y; Solowska JM; Snyder EY; Fischer I; Tessler A
    J Neurosci Res; 2001 Sep; 65(6):549-64. PubMed ID: 11550223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury.
    Kwon BK; Liu J; Lam C; Plunet W; Oschipok LW; Hauswirth W; Di Polo A; Blesch A; Tetzlaff W
    Spine (Phila Pa 1976); 2007 May; 32(11):1164-73. PubMed ID: 17495772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration.
    Kobayashi NR; Fan DP; Giehl KM; Bedard AM; Wiegand SJ; Tetzlaff W
    J Neurosci; 1997 Dec; 17(24):9583-95. PubMed ID: 9391013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunosuppression with either cyclosporine a or FK506 supports survival of transplanted fibroblasts and promotes growth of host axons into the transplant after spinal cord injury.
    Hayashi Y; Shumsky JS; Connors T; Otsuka T; Fischer I; Tessler A; Murray M
    J Neurotrauma; 2005 Nov; 22(11):1267-81. PubMed ID: 16305315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function.
    Shumsky JS; Tobias CA; Tumolo M; Long WD; Giszter SF; Murray M
    Exp Neurol; 2003 Nov; 184(1):114-30. PubMed ID: 14637085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration.
    Novikova LN; Novikov LN; Kellerth JO
    Eur J Neurosci; 2000 Feb; 12(2):776-80. PubMed ID: 10712659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function.
    Liu Y; Kim D; Himes BT; Chow SY; Schallert T; Murray M; Tessler A; Fischer I
    J Neurosci; 1999 Jun; 19(11):4370-87. PubMed ID: 10341240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons.
    Storer PD; Dolbeare D; Houle JD
    J Neurosci Res; 2003 Nov; 74(4):502-11. PubMed ID: 14598294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Undesired effects of a combinatorial treatment for spinal cord injury--transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus.
    Bretzner F; Liu J; Currie E; Roskams AJ; Tetzlaff W
    Eur J Neurosci; 2008 Nov; 28(9):1795-807. PubMed ID: 18973595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells.
    Grill RJ; Blesch A; Tuszynski MH
    Exp Neurol; 1997 Dec; 148(2):444-52. PubMed ID: 9417824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation into the potential for activity-dependent regeneration of the rubrospinal tract after spinal cord injury.
    Harvey PJ; Grochmal J; Tetzlaff W; Gordon T; Bennett DJ
    Eur J Neurosci; 2005 Dec; 22(12):3025-35. PubMed ID: 16367769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axotomized rubrospinal neurons rescued by fetal spinal cord transplants maintain axon collaterals to rostral CNS targets.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):13-25. PubMed ID: 9398446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regrowth of acute and chronic injured spinal pathways within supra-lesional post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2000; 101(1):197-210. PubMed ID: 11068148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression.
    Tobias CA; Han SS; Shumsky JS; Kim D; Tumolo M; Dhoot NO; Wheatley MA; Fischer I; Tessler A; Murray M
    J Neurotrauma; 2005 Jan; 22(1):138-56. PubMed ID: 15665609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury.
    Iarikov DE; Kim BG; Dai HN; McAtee M; Kuhn PL; Bregman BS
    J Neurotrauma; 2007 Apr; 24(4):690-702. PubMed ID: 17439351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons.
    Ye JH; Houle JD
    Exp Neurol; 1997 Jan; 143(1):70-81. PubMed ID: 9000447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.