These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 14637339)

  • 41. Nitrite reduction and formation of corrosion coatings in zerovalent iron systems.
    Huang YH; Zhang TC
    Chemosphere; 2006 Aug; 64(6):937-43. PubMed ID: 16488465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reactive iron barriers: a niche enabling microbial dehalorespiration of 1,2-dichloroethane.
    Zemb O; Lee M; Low A; Manefield M
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):319-25. PubMed ID: 20607230
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of iron and manganese using biological roughing up flow filtration technology.
    Pacini VA; María Ingallinella A; Sanguinetti G
    Water Res; 2005 Nov; 39(18):4463-75. PubMed ID: 16225901
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of iron from groundwater by ash: a systematic study of a traditional method.
    Das B; Hazarika P; Saikia G; Kalita H; Goswami DC; Das HB; Dube SN; Dutta RK
    J Hazard Mater; 2007 Mar; 141(3):834-41. PubMed ID: 16956716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of ferrous iron and ph on carbon tetrachloride degradation by Methanosarcina thermophila.
    Andrews EJ; Novak PJ
    Water Res; 2001 Jun; 35(9):2307-13. PubMed ID: 11358312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biological and chemical interactions with U(VI) during anaerobic enrichment in the presence of iron oxide coated quartz.
    Lee BD; Walton MR; Megio JL
    Water Res; 2005 Nov; 39(18):4363-74. PubMed ID: 16236343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of methyl parathion from water by electrochemically generated Fenton's reagent.
    Diagne M; Oturan N; Oturan MA
    Chemosphere; 2007 Jan; 66(5):841-8. PubMed ID: 16870230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process.
    Zhang T; Liu Y; Fang HH
    Biotechnol Bioeng; 2005 Oct; 92(2):173-82. PubMed ID: 15962340
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal.
    Támara ML; Butler EC
    Environ Sci Technol; 2004 Mar; 38(6):1866-76. PubMed ID: 15074701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction.
    Xie L; Shang C
    Chemosphere; 2007 Jan; 66(9):1652-9. PubMed ID: 16942788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities.
    Mori K; Tsurumaru H; Harayama S
    J Biosci Bioeng; 2010 Oct; 110(4):426-30. PubMed ID: 20547365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Biotechnol Bioeng; 2005 Dec; 92(7):810-9. PubMed ID: 16136594
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Natural organic matter (NOM) in roof runoff and its impact on the Fe0 treatment system of dissolved metals.
    Rangsivek R; Jekel MR
    Chemosphere; 2008 Mar; 71(1):18-29. PubMed ID: 18083213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Characteristics and mechanism of 2,4,6-TCP degradation by the "Fe0/enriched-bacteria" system].
    Dai YZ; Guo LL; Shi L; Liu ZY; Gao BC
    Huan Jing Ke Xue; 2012 Aug; 33(8):2741-6. PubMed ID: 23213899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon disulfide removal by zero valent iron.
    McGeough KL; Kalin RM; Myles P
    Environ Sci Technol; 2007 Jul; 41(13):4607-12. PubMed ID: 17695904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics.
    Nurmi JT; Tratnyek PG; Sarathy V; Baer DR; Amonette JE; Pecher K; Wang C; Linehan JC; Matson DW; Penn RL; Driessen MD
    Environ Sci Technol; 2005 Mar; 39(5):1221-30. PubMed ID: 15787360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Passivation process and the mechanism of packing particles in the Fe0/GAC system during the treatment of ABS resin wastewater.
    Lai B; Zhou Y; Wang J; Zhang Y; Chen Z
    Environ Technol; 2014; 35(5-8):973-83. PubMed ID: 24645481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.