BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1463840)

  • 1. Mutational analysis of pea lectin. Substitution of Asn125 for Asp in the monosaccharide-binding site eliminates mannose/glucose-binding activity.
    van Eijsden RR; Hoedemaeker FJ; Díaz CL; Lugtenberg BJ; de Pater BS; Kijne JW
    Plant Mol Biol; 1992 Dec; 20(6):1049-58. PubMed ID: 1463840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Destabilization of pea lectin by substitution of a single amino acid in a surface loop.
    Hoedemaeker FJ; van Eijsden RR; Díaz CL; de Pater BS; Kijne JW
    Plant Mol Biol; 1993 Sep; 22(6):1039-46. PubMed ID: 8400124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar-binding activity of pea (Pisum sativum) lectin is essential for heterologous infection of transgenic white clover hairy roots by Rhizobium leguminosarum biovar viciae.
    van Eijsden R; Díaz CL; de Pater BS; Kijne JW
    Plant Mol Biol; 1995 Nov; 29(3):431-9. PubMed ID: 8534843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of the sugar-binding site of pea lectin.
    Van Eijsden RR; De Pater BS; Kijne JW
    Glycoconj J; 1994 Aug; 11(4):375-80. PubMed ID: 7873934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational studies of the amino acid residues in the combining site of Erythrina corallodendron lectin.
    Adar R; Sharon N
    Eur J Biochem; 1996 Aug; 239(3):668-74. PubMed ID: 8774711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of the sugar binding sites in carbohydrate binding proteins--a computer modeling study.
    Rao VS; Lam K; Qasba PK
    Int J Biol Macromol; 1998 Nov; 23(4):295-307. PubMed ID: 9849627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site.
    Young NM; Oomen RP
    J Mol Biol; 1992 Dec; 228(3):924-34. PubMed ID: 1469724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of Asn128 to Asp of Phaseolus vulgaris leucoagglutinin (PHA-L) eliminates carbohydrate-binding and biological activity.
    Mirkov TE; Chrispeels MJ
    Glycobiology; 1993 Dec; 3(6):581-7. PubMed ID: 8130390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning of the bark and seed lectins from the Japanese pagoda tree (Sophora japonica).
    Van Damme EJ; Barre A; Rouge P; Peumans WJ
    Plant Mol Biol; 1997 Feb; 33(3):523-36. PubMed ID: 9049272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural features of the combining site region of Erythrina corallodendron lectin: role of tryptophan 135.
    Adar R; Moreno E; Streicher H; Karlsson KA; Angström J; Sharon N
    Protein Sci; 1998 Jan; 7(1):52-63. PubMed ID: 9514259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted sequence and structure of a vegetative lectin in Pisum sativum.
    Pak JH; Hendrickson T; Dobres MS
    Plant Mol Biol; 1992 Mar; 18(5):857-63. PubMed ID: 1581566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete primary structure of a unique mannose/glucose-specific lectin from field bean (Dolichos lab lab).
    Gowda LR; Savithri HS; Rao DR
    J Biol Chem; 1994 Jul; 269(29):18789-93. PubMed ID: 8034631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a mannose/glucose-specific lectin from Vicia cracca.
    Baumann CM; Strosberg AD; Rüdiger H
    Eur J Biochem; 1982 Feb; 122(1):105-10. PubMed ID: 7060560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal location of lectin genes indicates they are not the basis of Rhizobium strain specificity mutations identified in pea (Pisum sativum L.).
    Lu J; Weeden NF; LaRue TA
    J Hered; 1994; 85(3):179-82. PubMed ID: 8014459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Ca2+ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor.
    Mullin NP; Hitchen PG; Taylor ME
    J Biol Chem; 1997 Feb; 272(9):5668-81. PubMed ID: 9038177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure determination and refinement at 2.3-A resolution of the lentil lectin.
    Loris R; Steyaert J; Maes D; Lisgarten J; Pickersgill R; Wyns L
    Biochemistry; 1993 Aug; 32(34):8772-81. PubMed ID: 8364026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of two crystal forms of lentil lectin at 1.8 A resolution.
    Loris R; Van Overberge D; Dao-Thi MH; Poortmans F; Maene N; Wyns L
    Proteins; 1994 Dec; 20(4):330-46. PubMed ID: 7731952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak protein-protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus.
    Buts L; Dao-Thi MH; Loris R; Wyns L; Etzler M; Hamelryck T
    J Mol Biol; 2001 May; 309(1):193-201. PubMed ID: 11491289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips.
    Kijne JW; Smit G; Díaz CL; Lugtenberg BJ
    J Bacteriol; 1988 Jul; 170(7):2994-3000. PubMed ID: 3384802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Legume lectin structure.
    Loris R; Hamelryck T; Bouckaert J; Wyns L
    Biochim Biophys Acta; 1998 Mar; 1383(1):9-36. PubMed ID: 9546043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.