These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 1463842)
1. Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Liu CN; Li XQ; Gelvin SB Plant Mol Biol; 1992 Dec; 20(6):1071-87. PubMed ID: 1463842 [TBL] [Abstract][Full Text] [Related]
2. Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Li XQ; Liu CN; Ritchie SW; Peng JY; Gelvin SB; Hodges TK Plant Mol Biol; 1992 Dec; 20(6):1037-48. PubMed ID: 1463839 [TBL] [Abstract][Full Text] [Related]
3. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation. Ye X; Chen Y; Wan Y; Hong YJ; Ruebelt MC; Gilbertson LA Plant Cell Rep; 2016 Mar; 35(3):601-11. PubMed ID: 26650837 [TBL] [Abstract][Full Text] [Related]
4. Efficient vir gene induction in Agrobacterium tumefaciens requires virA, virG, and vir box from the same Ti plasmid. Krishnamohan A; Balaji V; Veluthambi K J Bacteriol; 2001 Jul; 183(13):4079-89. PubMed ID: 11395473 [TBL] [Abstract][Full Text] [Related]
5. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Hansen G; Das A; Chilton MD Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7603-7. PubMed ID: 8052627 [TBL] [Abstract][Full Text] [Related]
6. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Tang W Plant Cell Rep; 2003 Feb; 21(6):555-62. PubMed ID: 12789430 [TBL] [Abstract][Full Text] [Related]
7. A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains. Hong SB; Hwang I; Dessaux Y; Guyon P; Kim KS; Farrand SK J Bacteriol; 1997 Aug; 179(15):4831-40. PubMed ID: 9244272 [TBL] [Abstract][Full Text] [Related]
8. Multigene Engineering in Rice Using High-Capacity Agrobacterium tumefaciens BIBAC Vectors. He R Methods Mol Biol; 2016; 1385():29-37. PubMed ID: 26614279 [TBL] [Abstract][Full Text] [Related]
9. [A simple and highly efficient Agrobacterium-mediated rice transformation system]. Li MR; Li HQ Shi Yan Sheng Wu Xue Bao; 2003 Aug; 36(4):289-94. PubMed ID: 14574993 [TBL] [Abstract][Full Text] [Related]
10. Small high-yielding binary Ti vectors pLSU with co-directional replicons for Agrobacterium tumefaciens-mediated transformation of higher plants. Lee S; Su G; Lasserre E; Aghazadeh MA; Murai N Plant Sci; 2012 May; 187():49-58. PubMed ID: 22404832 [TBL] [Abstract][Full Text] [Related]
11. Transformation of rice mediated by Agrobacterium tumefaciens. Hiei Y; Komari T; Kubo T Plant Mol Biol; 1997 Sep; 35(1-2):205-18. PubMed ID: 9291974 [TBL] [Abstract][Full Text] [Related]
12. The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. van der Fits L; Deakin EA; Hoge JH; Memelink J Plant Mol Biol; 2000 Jul; 43(4):495-502. PubMed ID: 11052201 [TBL] [Abstract][Full Text] [Related]
13. The octopine-type Ti plasmid pTiA6 of Agrobacterium tumefaciens contains a gene homologous to the chromosomal virulence gene acvB. Kalogeraki VS; Winans SC J Bacteriol; 1995 Feb; 177(4):892-7. PubMed ID: 7860597 [TBL] [Abstract][Full Text] [Related]
14. Nucleotide sequence of the virulence gene virG of the Agrobacterium tumefaciens octopine Ti plasmid: significant homology between virG and the regulatory genes ompR, phoB and dye of E. coli. Melchers LS; Thompson DV; Idler KB; Schilperoort RA; Hooykaas PJ Nucleic Acids Res; 1986 Dec; 14(24):9933-42. PubMed ID: 3027669 [TBL] [Abstract][Full Text] [Related]
15. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Komari T; Hiei Y; Saito Y; Murai N; Kumashiro T Plant J; 1996 Jul; 10(1):165-74. PubMed ID: 8758986 [TBL] [Abstract][Full Text] [Related]
16. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Miller M; Tagliani L; Wang N; Berka B; Bidney D; Zhao ZY Transgenic Res; 2002 Aug; 11(4):381-96. PubMed ID: 12212841 [TBL] [Abstract][Full Text] [Related]
17. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation. Han ZF; Hunter DM; Sibbald S; Zhang JS; Tian L Mol Plant Microbe Interact; 2013 Nov; 26(11):1359-65. PubMed ID: 24088018 [TBL] [Abstract][Full Text] [Related]
18. vir genes influence conjugal transfer of the Ti plasmid of Agrobacterium tumefaciens. Gelvin SB; Habeck LL J Bacteriol; 1990 Mar; 172(3):1600-8. PubMed ID: 2155206 [TBL] [Abstract][Full Text] [Related]
19. An Agrobacterium virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. Pan SQ; Jin S; Boulton MI; Hawes M; Gordon MP; Nester EW Mol Microbiol; 1995 Jul; 17(2):259-69. PubMed ID: 7494475 [TBL] [Abstract][Full Text] [Related]
20. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.). Egnin M; Mora A; Prakash CS In Vitro Cell Dev Biol Plant; 1998; 34(4):310-8. PubMed ID: 11760772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]