BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 14638728)

  • 61. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone.
    Karim L; Tang SY; Sroga GE; Vashishth D
    Osteoporos Int; 2013 Sep; 24(9):2441-7. PubMed ID: 23471564
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Measurement of pentosidine in human plasma protein by a single-column high-performance liquid chromatography method with fluorescence detection.
    Scheijen JL; van de Waarenburg MP; Stehouwer CD; Schalkwijk CG
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Mar; 877(7):610-4. PubMed ID: 19188098
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Methylglyoxal concentration and glyoxalase activities in the human lens.
    Haik GM; Lo TW; Thornalley PJ
    Exp Eye Res; 1994 Oct; 59(4):497-500. PubMed ID: 7859825
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chemical modification of proteins by methylglyoxal.
    Degenhardt TP; Thorpe SR; Baynes JW
    Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1139-45. PubMed ID: 9846896
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Separation of the yellow chromophores in individual brunescent cataracts.
    Cheng R; Lin B; Ortwerth BJ
    Exp Eye Res; 2003 Sep; 77(3):313-25. PubMed ID: 12907164
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct.
    Shipanova IN; Glomb MA; Nagaraj RH
    Arch Biochem Biophys; 1997 Aug; 344(1):29-36. PubMed ID: 9244378
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model.
    Navarro M; Morales FJ
    Food Chem; 2017 Feb; 217():602-609. PubMed ID: 27664677
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs.
    Xue J; Ray R; Singer D; Böhme D; Burz DS; Rai V; Hoffmann R; Shekhtman A
    Biochemistry; 2014 May; 53(20):3327-35. PubMed ID: 24824951
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [The role of glycation in cataract lens in diabetic patients].
    Hashimoto H
    Nippon Ganka Gakkai Zasshi; 1998 Jan; 102(1):34-41. PubMed ID: 9489368
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Creatine plays a direct role as a protein modifier in the formation of a novel advanced glycation end product.
    Miyazaki K; Nagai R; Horiuchi S
    J Biochem; 2002 Oct; 132(4):543-50. PubMed ID: 12359068
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Immunochemical detection of dicarbonyl-derived imidazolium protein crosslinks in human lenses.
    Shamsi FA; Nagaraj RH
    Curr Eye Res; 1999 Sep; 19(3):276-84. PubMed ID: 10487968
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanism of lysine oxidation in human lens crystallins during aging and in diabetes.
    Fan X; Zhang J; Theves M; Strauch C; Nemet I; Liu X; Qian J; Giblin FJ; Monnier VM
    J Biol Chem; 2009 Dec; 284(50):34618-27. PubMed ID: 19854833
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phototransformations of advanced glycation end products in the human eye lens due to ultraviolet A light irradiation.
    Argirov OK; Lin B; Ortwerth BJ
    Ann N Y Acad Sci; 2005 Jun; 1043():166-73. PubMed ID: 16037236
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pentosidine and autofluorescence in lenses of diabetic patients.
    Hashimoto H; Arai K; Yoshida S; Chikuda M; Obara Y
    Jpn J Ophthalmol; 1997; 41(5):274-7. PubMed ID: 9363554
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vivo glycation of bovine lens crystallins.
    Van Boekel MA; Hoenders HJ
    Biochim Biophys Acta; 1992 Sep; 1159(1):99-102. PubMed ID: 1390916
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of glycation on human γd-crystallin proteins by different glycation-inducing agents.
    Li CT; How SC; Chen ME; Lo CH; Chun MC; Chang CK; Chen WA; Wu JW; Wang SS
    Int J Biol Macromol; 2018 Oct; 118(Pt A):442-451. PubMed ID: 29949747
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The presence of a glucose-derived Maillard reaction product in the human lens.
    Nagaraj RH; Sady C
    FEBS Lett; 1996 Mar; 382(3):234-8. PubMed ID: 8605976
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Proteasomal degradation of glycated proteins depends on substrate unfolding: Preferred degradation of moderately modified myoglobin.
    Raupbach J; Ott C; Koenig J; Grune T
    Free Radic Biol Med; 2020 May; 152():516-524. PubMed ID: 31760091
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mass spectrometric determination of early and advanced glycation in biology.
    Rabbani N; Ashour A; Thornalley PJ
    Glycoconj J; 2016 Aug; 33(4):553-68. PubMed ID: 27438287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.