BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 14638914)

  • 41. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model.
    Sun L; Zou LX; Wang J; Chen T; Han YC; Zhu DD; Zhuo SC
    Kidney Blood Press Res; 2018; 43(3):820-835. PubMed ID: 29843125
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of Autophagy Attenuated Ethylene Glycol Induced Crystals Deposition and Renal Injury in a Rat Model of Nephrolithiasis.
    Liu Y; Liu Q; Wang X; He Z; Li D; Guan X; Tao Z; Deng Y
    Kidney Blood Press Res; 2018; 43(1):246-255. PubMed ID: 29490299
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Peroxisome proliferator-activated receptor γ modulates renal crystal retention associated with high oxalate concentration by regulating tubular epithelial cellular transdifferentiation.
    Li S; Lan Y; Wu W; Duan X; Kong Z; Wu W; Zeng G
    J Cell Physiol; 2019 Mar; 234(3):2837-2850. PubMed ID: 30317563
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones.
    Evan AP; Coe FL; Gillen D; Lingeman JE; Bledsoe S; Worcester EM
    Anat Rec (Hoboken); 2008 Mar; 291(3):325-34. PubMed ID: 18286613
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture.
    Verkoelen CF; van der Boom BG; Houtsmuller AB; Schröder FH; Romijn JC
    Am J Physiol; 1998 May; 274(5):F958-65. PubMed ID: 9612335
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies.
    Khan SR
    Clin Exp Nephrol; 2004 Jun; 8(2):75-88. PubMed ID: 15235923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proposed mechanisms in renal tubular crystal retention.
    Verkoelen CF; Verhulst A
    Kidney Int; 2007 Jul; 72(1):13-8. PubMed ID: 17429341
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Renal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals.
    Lieske JC; Hammes MS; Hoyer JR; Toback FG
    Kidney Int; 1997 Mar; 51(3):679-86. PubMed ID: 9067899
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immuno-localization of CD44 and osteopontin in developing human kidney.
    Crisi GM; Marconi SA; Rockwell GF; Braden GL; Campfield TJ
    Pediatr Res; 2009 Jan; 65(1):79-84. PubMed ID: 18787423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atorvastatin Decreases Renal Calcium Oxalate Stone Deposits by Enhancing Renal Osteopontin Expression in Hyperoxaluric Stone-Forming Rats Fed a High-Fat Diet.
    Liu CJ; Tsai YS; Huang HS
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328466
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Osteopontin and calcium stone formation.
    Kleinman JG; Wesson JA; Hughes J
    Nephron Physiol; 2004; 98(2):p43-7. PubMed ID: 15499214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anti-nephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo.
    Hong SH; Lee HJ; Sohn EJ; Ko HS; Shim BS; Ahn KS; Kim SH
    Pharmacol Rep; 2013; 65(4):970-9. PubMed ID: 24145091
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Renal osteopontin expression in experimental urolithiasis.
    Yagisawa T; Chandhoke PS; Fan J; Lucia S
    J Endourol; 1998 Apr; 12(2):171-6. PubMed ID: 9607445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Roles of and correlation between alpha-smooth muscle actin, CD44, hyaluronic acid and osteopontin in crescent formation in human glomerulonephritis.
    Nakamura H; Kitazawa K; Honda H; Sugisaki T
    Clin Nephrol; 2005 Dec; 64(6):401-11. PubMed ID: 16370152
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differences in osteopontin up-regulation between proximal and distal tubules after renal ischemia/reperfusion.
    Persy VP; Verstrepen WA; Ysebaert DK; De Greef KE; De Broe ME
    Kidney Int; 1999 Aug; 56(2):601-11. PubMed ID: 10432399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Urinary calcium oxalate supersaturation beyond nephrolithiasis. Relationship with tubulointerstitial damage].
    Toblli JE; Angerosa M; Stella I; Ferder L; Inserra F
    Medicina (B Aires); 2003; 63(2):97-104. PubMed ID: 12793076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation?
    de Bruijn WC; Boevé ER; van Run PR; van Miert PP; de Water R; Romijn JC; Verkoelen CF; Cao LC; Schröder FH
    Scanning Microsc; 1995 Mar; 9(1):103-14. PubMed ID: 8553009
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Histological observations of the adhesion and endocytosis of calcium oxalate crystals in MDCK cells and in rat and human kidney.
    Ebisuno S; Kohjimoto Y; Tamura M; Inagaki T; Ohkawa T
    Urol Int; 1997; 58(4):227-31. PubMed ID: 9253123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of CD44 in kidney after acute ischemic injury in rats.
    Lewington AJ; Padanilam BJ; Martin DR; Hammerman MR
    Am J Physiol Regul Integr Comp Physiol; 2000 Jan; 278(1):R247-54. PubMed ID: 10644646
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Minipump induced hyperoxaluria and crystal deposition in rats: a model for calcium oxalate urolithiasis.
    Marengo SR; Chen D; MacLennan GT; Resnick MI; Jacobs GH
    J Urol; 2004 Mar; 171(3):1304-8. PubMed ID: 14767338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.