BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 14639745)

  • 1. Synthesis, biological activity, and docking studies of new acetylcholinesterase inhibitors of the bispyridinium type.
    Kapková P; Stiefl N; Sürig U; Engels B; Baumann K; Holzgrabe U
    Arch Pharm (Weinheim); 2003 Nov; 336(11):523-40. PubMed ID: 14639745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer's disease therapeutics.
    Kwon YE; Park JY; No KT; Shin JH; Lee SK; Eun JS; Yang JH; Shin TY; Kim DK; Chae BS; Leem JY; Kim KH
    Bioorg Med Chem; 2007 Oct; 15(20):6596-607. PubMed ID: 17681794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and biological evaluation of a new series of berberine derivatives as dual inhibitors of acetylcholinesterase and butyrylcholinesterase.
    Huang L; Luo Z; He F; Lu J; Li X
    Bioorg Med Chem; 2010 Jun; 18(12):4475-84. PubMed ID: 20471843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and biological activity of pyridinium-type acetylcholinesterase inhibitors.
    Alptüzün V; Kapková P; Baumann K; Erciyas E; Holzgrabe U
    J Pharm Pharmacol; 2003 Oct; 55(10):1397-404. PubMed ID: 14607022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors.
    Campiani G; Fattorusso C; Butini S; Gaeta A; Agnusdei M; Gemma S; Persico M; Catalanotti B; Savini L; Nacci V; Novellino E; Holloway HW; Greig NH; Belinskaya T; Fedorko JM; Saxena A
    J Med Chem; 2005 Mar; 48(6):1919-29. PubMed ID: 15771436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and in vitro screening of symmetrical bispyridinium cholinesterase inhibitors bearing different connecting linkage-initial study for Myasthenia gravis implications.
    Musilek K; Komloova M; Zavadova V; Holas O; Hrabinova M; Pohanka M; Dohnal V; Nachon F; Dolezal M; Kuca K; Jung YS
    Bioorg Med Chem Lett; 2010 Mar; 20(5):1763-6. PubMed ID: 20138518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.
    Sheng R; Lin X; Zhang J; Chol KS; Huang W; Yang B; He Q; Hu Y
    Bioorg Med Chem; 2009 Sep; 17(18):6692-8. PubMed ID: 19692250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors.
    Huang L; Shi A; He F; Li X
    Bioorg Med Chem; 2010 Feb; 18(3):1244-51. PubMed ID: 20056426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and acetylcholinesterase and butyrylcholinesterase inhibitory activities of 7-alkoxyl substituted indolizinoquinoline-5,12-dione derivatives.
    Wu ZP; Wu XW; Shen T; Li YP; Cheng X; Gu LQ; Huang ZS; An LK
    Arch Pharm (Weinheim); 2012 Mar; 345(3):175-84. PubMed ID: 21989769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3D structure-activity relationship based on molecular interaction fields.
    Vitorović-Todorović MD; Juranić IO; Mandić LM; Drakulić BJ
    Bioorg Med Chem; 2010 Feb; 18(3):1181-93. PubMed ID: 20061157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further studies on the interaction of the 5-hydroxytryptamine3 (5-HT3) receptor with arylpiperazine ligands. development of a new 5-HT3 receptor ligand showing potent acetylcholinesterase inhibitory properties.
    Cappelli A; Gallelli A; Manini M; Anzini M; Mennuni L; Makovec F; Menziani MC; Alcaro S; Ortuso F; Vomero S
    J Med Chem; 2005 May; 48(10):3564-75. PubMed ID: 15887964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholinesterase inhibitors: synthesis and structure-activity relationships of omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)- methyl]aminoalkoxyheteroaryl derivatives.
    Rampa A; Bisi A; Valenti P; Recanatini M; Cavalli A; Andrisano V; Cavrini V; Fin L; Buriani A; Giusti P
    J Med Chem; 1998 Oct; 41(21):3976-86. PubMed ID: 9767635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis and evaluation of novel 2-(aminoalkyl)-isoindoline-1,3-dione derivatives as dual-binding site acetylcholinesterase inhibitors.
    Ignasik M; Bajda M; Guzior N; Prinz M; Holzgrabe U; Malawska B
    Arch Pharm (Weinheim); 2012 Jul; 345(7):509-16. PubMed ID: 22467516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, Biological Evaluation and Molecular Docking Study of Hydrazone-Containing Pyridinium Salts as Cholinesterase Inhibitors.
    Parlar S; Bayraktar G; Tarikogullari AH; Alptüzün V; Erciyas E
    Chem Pharm Bull (Tokyo); 2016; 64(9):1281-7. PubMed ID: 27581632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.
    Camps P; Formosa X; Galdeano C; Gómez T; Muñoz-Torrero D; Scarpellini M; Viayna E; Badia A; Clos MV; Camins A; Pallàs M; Bartolini M; Mancini F; Andrisano V; Estelrich J; Lizondo M; Bidon-Chanal A; Luque FJ
    J Med Chem; 2008 Jun; 51(12):3588-98. PubMed ID: 18517184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors.
    Savini L; Gaeta A; Fattorusso C; Catalanotti B; Campiani G; Chiasserini L; Pellerano C; Novellino E; McKissic D; Saxena A
    J Med Chem; 2003 Jan; 46(1):1-4. PubMed ID: 12502352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/-nonsubstituted benzal)hydrazone derivatives and acetylcholinesterase and butyrylcholinesterase inhibitory activities in vitro.
    Utku S; Gökçe M; Orhan I; Sahin MF
    Arzneimittelforschung; 2011; 61(1):1-7. PubMed ID: 21355440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors.
    Razavi SF; Khoobi M; Nadri H; Sakhteman A; Moradi A; Emami S; Foroumadi A; Shafiee A
    Eur J Med Chem; 2013 Jun; 64():252-9. PubMed ID: 23644208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relationships and binding mode in the human acetylcholinesterase active site of pseudo-irreversible inhibitors related to xanthostigmine.
    Rizzo S; Cavalli A; Ceccarini L; Bartolini M; Belluti F; Bisi A; Andrisano V; Recanatini M; Rampa A
    ChemMedChem; 2009 Apr; 4(4):670-9. PubMed ID: 19222043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.