These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 14640093)

  • 1. Model-based parameter estimation using cardiovascular response to orthostatic stress.
    Heldt T; Shim EB; Kamm RD; Mark RG
    Comput Cardiol; 2001; 28():337-40. PubMed ID: 14640093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational model of cardiovascular function during orthostatic stress.
    Heldt T; Shim EB; Kamm RD; Mark RG
    Comput Cardiol; 2000; 27():777-80. PubMed ID: 11806418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A simulated study of effects of simulated hypovolemia on cardiovascular response to orthostatic stress].
    Hao WY; Zhang LF; Wu XY; Zhang WY
    Space Med Med Eng (Beijing); 2000 Aug; 13(4):259-62. PubMed ID: 11892747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The changes of cardiovascular response to orthostatic stress caused by hypovolemia induced by weightlessness: a simulation study].
    Hao W; Bai J; Zhang L; Wu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):48-52. PubMed ID: 11951522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspects of control of the cardiovascular-respiratory system during orthostatic stress induced by lower body negative pressure.
    Kappel F; Fink M; Batzel JJ
    Math Biosci; 2007 Apr; 206(2):273-308. PubMed ID: 16938315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twenty four hours head-down tilt decreases arterial baroreflex function in conscious rat.
    Martel E; Champeroux P; Lacolley P; Cuche JL; Safar ME
    Physiologist; 1993 Feb; 36(1 Suppl):S24-5. PubMed ID: 11538523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of depressed myocardial contractility induced by microgravity on cardiovascular response to orthostatic stress: a computer simulation.
    Hao WY; Bai J; Zhang WY; Wu XY; Zhang LF
    Comput Cardiol; 2001; 28():349-52. PubMed ID: 14640094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of dynamic cardiovascular responses during G-transition-induced orthostatic stress in pitch and roll rotations.
    Melek WW; Lu Z; Kapps A; Cheung B
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1481-90. PubMed ID: 12549730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head-down bed rest reduces the breathing rate short-term variability in subjects with orthostatic intolerance.
    Balocchi R; Menicucci D; Varanini M; Chillemi S; Legramante JM; Saltini C; Raimondi G
    J Gravit Physiol; 2004 Jul; 11(2):P97-8. PubMed ID: 16235432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A simulation study of effects of depressed myocardial contractility on cardiovascular response to lower body negative pressure].
    Hao WY; Zhang LF; Wu XY; Bai J
    Space Med Med Eng (Beijing); 2001 Aug; 14(4):253-6. PubMed ID: 11681336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 4 hours HD -6 degrees on heart rate variability in symptomatic and non symptomatic subjects.
    Raimondi G; Iellamo F; Balocchi R; Chillemi S; Sacco S; Legramante JM
    J Gravit Physiol; 2000 Jul; 7(2):P167-8. PubMed ID: 12697520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling heart rate regulation--part II: parameter identification and analysis.
    Fowler KR; Gray GA; Olufsen MS
    Cardiovasc Eng; 2008 Jun; 8(2):109-19. PubMed ID: 18172764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of cardiovascular response to orthostatic stress.
    Heldt T; Shim EB; Kamm RD; Mark RG
    J Appl Physiol (1985); 2002 Mar; 92(3):1239-54. PubMed ID: 11842064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of 7 d head down tilt on cardiopulmonary circulation during orthostasis].
    Wang DS; Xiang QL; Shen XY; Meng JR; Dong Q
    Space Med Med Eng (Beijing); 1999 Apr; 12(2):125-9. PubMed ID: 12430541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroendocrine changes involved in the genesis of HD-induced orthostatic intolerance.
    Raimondi G; Strollo F; Legramante JM; Sacco S; Pallante M; Vespa A; Saltini C
    J Gravit Physiol; 2004 Jul; 11(2):P63-4. PubMed ID: 16231457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational models of cardiovascular function for analysis of post-flight orthostatic intolerance.
    Heldt T; Shim EB; Kamm RD; Mark RG
    Comput Cardiol; 1999; 26():213-6. PubMed ID: 11795340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of overall mathematical models of the cardiovascular system for simulating response to orthostatic stresses.
    Karam EH; Srinivasan RS; Charles JB
    Physiologist; 1993; 36(1 Suppl):S164-5. PubMed ID: 11537423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiovascular peripheral effector mechanism in postflight orthostatic intolerance: a simulation study.
    Hao WY; Zhang LF; Wu XY
    J Gravit Physiol; 2000 Jul; 7(2):P151-2. PubMed ID: 12697528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baroreflex control of heart rate during heating in subjects with low orthostatic tolerance.
    Yamazaki F; Kawahara C; Soga I; Yamada S; Hamasaki K
    Aviat Space Environ Med; 2003 Dec; 74(12):1237-42. PubMed ID: 14692465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting acute hypotensive episodes based on HR baroreflex model estimation.
    Ghaffari A; Jalali A
    Cardiovasc Eng; 2009 Dec; 9(4):161-4. PubMed ID: 19830553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.