BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 14640218)

  • 1. Assessment of compatible solutes to overcome salinity stress in thermophilic (55 degrees C) methanol-fed sulfate reducing granular sludges.
    Vallero MV; Lettinga G; Lens PN
    Water Sci Technol; 2003; 48(6):195-202. PubMed ID: 14640218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of high salinity on the fate of methanol during the start-up of thermophilic (55 degrees C) sulfate reducing reactors.
    Vallero MV; Hulshoff Pol LW; Lens PN; Lettinga G
    Water Sci Technol; 2002; 45(10):121-6. PubMed ID: 12188531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of NaCl on thermophilic (55 degrees C) methanol degradation in sulfate reducing granular sludge reactors.
    Vallero MV; Hulshoff Pol LW; Lettinga G; Lens PN
    Water Res; 2003 May; 37(10):2269-80. PubMed ID: 12727235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanol conversion in high-rate anaerobic reactors.
    Weijma J; Stams AJ
    Water Sci Technol; 2001; 44(8):7-14. PubMed ID: 11730139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermophilic (55 degrees C) conversion of methanol in methanogenic-UASB reactors: influence of sulphate on methanol degradation and competition.
    Paulo PL; Vallero MV; Treviño RH; Lettinga G; Lens PN
    J Biotechnol; 2004 Jul; 111(1):79-88. PubMed ID: 15196772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor.
    Weijma J; Stams AJ; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 2000 Feb; 67(3):354-63. PubMed ID: 10620266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate reduction in methanol and formate-fed UASB reactors.
    Vallero MV; Camarero E; Lettinga G; Lens PN
    Biotechnol Prog; 2004; 20(5):1382-92. PubMed ID: 15458321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term adaptation of methanol-fed thermophilic (55 degrees C) sulfate-reducing reactors to NaCl.
    Vallero MV; Lettinga G; Lens PN
    J Ind Microbiol Biotechnol; 2003 Jun; 30(6):375-82. PubMed ID: 12884125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sulfur source on the performance and metal retention of methanol-fed UASB reactors.
    Zandvoort MH; van Hullebusch ED; Gieteling J; Lettinga G; Lens PN
    Biotechnol Prog; 2005; 21(3):839-50. PubMed ID: 15932264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bicarbonate dosing: a tool to performance recovery of a thermophilic methanol-fed UASB reactor.
    Paulo PL; van Lier JB; Lettinga G
    Water Sci Technol; 2003; 48(6):95-101. PubMed ID: 14640205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic methanethiol degradation in upflow anaerobic sludge bed reactors at high salinity (> or =0.5 M Na(+)).
    van Leerdam RC; de Bok FA; Lens PN; Stams AJ; Janssen AJ
    Biotechnol Bioeng; 2007 Sep; 98(1):91-100. PubMed ID: 17286270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 degrees C).
    Kotsopoulos TA; Zeng RJ; Angelidaki I
    Biotechnol Bioeng; 2006 Jun; 94(2):296-302. PubMed ID: 16570323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge.
    Bousková A; Dohányos M; Schmidt JE; Angelidaki I
    Water Res; 2005 Apr; 39(8):1481-8. PubMed ID: 15878019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UASB reactor for domestic wastewater treatment at low temperatures: a comparison between a classical UASB and hybrid UASB-filter reactor.
    Lew B; Tarre S; Belavski M; Green M
    Water Sci Technol; 2004; 49(11-12):295-301. PubMed ID: 15303754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of natural and modified zeolite addition on anaerobic digestion of piggery waste.
    Milán Z; Villa P; Sánchez E; Montalvo S; Borja R; Ilangovan K; Briones R
    Water Sci Technol; 2003; 48(6):263-9. PubMed ID: 14640227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-rate sulfate reduction at high salinity (up to 90 mS.cm(-1)) in mesophilic UASB reactors.
    Vallero MV; Sipma J; Lettinga G; Lens PN
    Biotechnol Bioeng; 2004 Apr; 86(2):226-35. PubMed ID: 15052643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of methanol degradation in UASB reactors: in situ versus pre-loading cobalt on anaerobic granular sludge.
    Zandvoort MH; Gieteling J; Lettinga G; Lens PN
    Biotechnol Bioeng; 2004 Sep; 87(7):897-904. PubMed ID: 15334416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic treatment of poultry mortality in a temperature-phased leachbed-UASB system.
    Chen TH; Huang JL
    Bioresour Technol; 2006 Aug; 97(12):1398-410. PubMed ID: 16112856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cobalt on the anaerobic thermophilic conversion of methanol.
    Paulo PL; Jiang B; Cysneiros D; Stams AJ; Lettinga G
    Biotechnol Bioeng; 2004 Feb; 85(4):434-41. PubMed ID: 14755561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: Induction and microbial community dynamics.
    Fermoso FG; Collins G; Bartacek J; O'Flaherty V; Lens P
    Biotechnol Bioeng; 2008 Jan; 99(1):49-58. PubMed ID: 17546693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.