BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14640622)

  • 1. Reversible switching of high-speed air-liquid two-phase flows using electrowetting-assisted flow-pattern change.
    Huh D; Tkaczyk AH; Bahng JH; Chang Y; Wei HH; Grotberg JB; Kim CJ; Kurabayashi K; Takayama S
    J Am Chem Soc; 2003 Dec; 125(48):14678-9. PubMed ID: 14640622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation.
    Diguet A; Li H; Queyriaux N; Chen Y; Baigl D
    Lab Chip; 2011 Aug; 11(16):2666-9. PubMed ID: 21727984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
    Melin J; van der Wijngaart W; Stemme G
    Lab Chip; 2005 Jun; 5(6):682-6. PubMed ID: 15915262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and reaction in microscale segmented gas-liquid flow.
    Günther A; Khan SA; Thalmann M; Trachsel F; Jensen KF
    Lab Chip; 2004 Aug; 4(4):278-86. PubMed ID: 15269792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient energy based modeling and experimental validation of liquid filling in planar micro-fluidic components and networks.
    Treise I; Fortner N; Shapiro B; Hightower A
    Lab Chip; 2005 Mar; 5(3):285-97. PubMed ID: 15726205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact model for multi-phase liquid-liquid flows in micro-fluidic devices.
    Jousse F; Lian G; Janes R; Melrose J
    Lab Chip; 2005 Jun; 5(6):646-56. PubMed ID: 15915257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS.
    Moon H; Wheeler AR; Garrell RL; Loo JA; Kim CJ
    Lab Chip; 2006 Sep; 6(9):1213-9. PubMed ID: 16929401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic control using photothermal nanoparticles.
    Liu GL; Kim J; Lu Y; Lee LP
    Nat Mater; 2006 Jan; 5(1):27-32. PubMed ID: 16362056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics.
    Malic L; Veres T; Tabrizian M
    Lab Chip; 2009 Feb; 9(3):473-5. PubMed ID: 19156299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows.
    Lettieri GL; Dodge A; Boer G; de Rooij NF; Verpoorte E
    Lab Chip; 2003 Feb; 3(1):34-9. PubMed ID: 15100803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional chemical profile manipulation using two-dimensional autonomous microfluidic control.
    Kim Y; Pekkan K; Messner WC; Leduc PR
    J Am Chem Soc; 2010 Feb; 132(4):1339-47. PubMed ID: 20063880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrowetting-based control of static droplet states on rough surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2007 Apr; 23(9):4918-24. PubMed ID: 17373831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrowetting-based droplet mixers for microfluidic systems.
    Paik P; Pamula VK; Pollack MG; Fair RB
    Lab Chip; 2003 Feb; 3(1):28-33. PubMed ID: 15100802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled microfluidic interfaces.
    Atencia J; Beebe DJ
    Nature; 2005 Sep; 437(7059):648-55. PubMed ID: 16193039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.