These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 14640636)

  • 1. Carbon nanotube fiber microelectrodes.
    Wang J; Deo RP; Poulin P; Mangey M
    J Am Chem Soc; 2003 Dec; 125(48):14706-7. PubMed ID: 14640636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube/teflon composite electrochemical sensors and biosensors.
    Wang J; Musameh M
    Anal Chem; 2003 May; 75(9):2075-9. PubMed ID: 12720343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance carbon composite electrode based on an ionic liquid as a binder.
    Maleki N; Safavi A; Tajabadi F
    Anal Chem; 2006 Jun; 78(11):3820-6. PubMed ID: 16737243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
    Zhu L; Zhai J; Yang R; Tian C; Guo L
    Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube--conducting-polymer composite nanowires.
    Wang J; Dai J; Yarlagadda T
    Langmuir; 2005 Jan; 21(1):9-12. PubMed ID: 15620278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces.
    Pumera M; Merkoçi A; Alegret S
    Electrophoresis; 2007 Apr; 28(8):1274-80. PubMed ID: 17366488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized carbon nanotube fiber microelectrodes as potential analytical tools.
    Viry L; Derré A; Garrigue P; Sojic N; Poulin P; Kuhn A
    Anal Bioanal Chem; 2007 Sep; 389(2):499-505. PubMed ID: 17653701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic loading of carbon nanotube/nano-Fe(3)O(4) composite for electrochemical sensing.
    Qu S; Wang J; Kong J; Yang P; Chen G
    Talanta; 2007 Feb; 71(3):1096-102. PubMed ID: 19071418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector.
    Wang J; Chen G; Chatrathi MP; Musameh M
    Anal Chem; 2004 Jan; 76(2):298-302. PubMed ID: 14719874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum.
    Fei S; Chen J; Yao S; Deng G; He D; Kuang Y
    Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.
    Zestos AG; Jacobs CB; Trikantzopoulos E; Ross AE; Venton BJ
    Anal Chem; 2014 Sep; 86(17):8568-75. PubMed ID: 25117550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S; Morin S; Stevenson KJ
    Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates.
    Wang J; Chen G; Wang M; Chatrathi MP
    Analyst; 2004 Jun; 129(6):512-5. PubMed ID: 15152328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fabrication of nanoelectrodes based on a single carbon nanotube.
    Shen J; Wang W; Chen Q; Wang M; Xu S; Zhou Y; Zhang XX
    Nanotechnology; 2009 Jun; 20(24):245307. PubMed ID: 19468163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity.
    Viet NX; Kishimoto S; Ohno Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6389-6395. PubMed ID: 30672689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes.
    Zhang M; Smith A; Gorski W
    Anal Chem; 2004 Sep; 76(17):5045-50. PubMed ID: 15373440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing.
    Nishimoto R; Sato Y; Wu J; Saizaki T; Kubo M; Wang M; Abe H; Richard I; Yoshinobu T; Sorin F; Guo Y
    Biosensors (Basel); 2022 Jul; 12(8):. PubMed ID: 35892456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system.
    Zhou M; Guo J; Guo LP; Bai J
    Anal Chem; 2008 Jun; 80(12):4642-50. PubMed ID: 18476717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.