BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14640692)

  • 41. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli.
    Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB
    J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J
    J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB.
    Weibezahn J; Tessarz P; Schlieker C; Zahn R; Maglica Z; Lee S; Zentgraf H; Weber-Ban EU; Dougan DA; Tsai FT; Mogk A; Bukau B
    Cell; 2004 Nov; 119(5):653-65. PubMed ID: 15550247
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis.
    Roudiak SG; Shrader TE
    Biochemistry; 1998 Aug; 37(32):11255-63. PubMed ID: 9698372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biochemical characterization of the apicoplast-targeted AAA+ ATPase ClpB from Plasmodium falciparum.
    Ngansop F; Li H; Zolkiewska A; Zolkiewski M
    Biochem Biophys Res Commun; 2013 Sep; 439(2):191-5. PubMed ID: 23994135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A gram-negative characteristic segment in Escherichia coli DnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE.
    Sugimoto S; Higashi C; Saruwatari K; Nakayama J; Sonomoto K
    FEBS Lett; 2007 Jun; 581(16):2993-9. PubMed ID: 17544398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine.
    Lee S; Sowa ME; Choi JM; Tsai FT
    J Struct Biol; 2004; 146(1-2):99-105. PubMed ID: 15037241
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional and structural characterization of Helicobacter pylori ClpX: a molecular chaperone of Hsp100 family.
    Rath P; Singh PK; Batra JK
    Protein Pept Lett; 2012 Dec; 19(12):1263-71. PubMed ID: 22670669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1).
    Li J; Sha B
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):909-11. PubMed ID: 11375526
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-function analysis of the Escherichia coli GrpE heat shock protein.
    Wu B; Wawrzynow A; Zylicz M; Georgopoulos C
    EMBO J; 1996 Sep; 15(18):4806-16. PubMed ID: 8890154
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG In vivo.
    Thomas JG; Baneyx F
    J Bacteriol; 1998 Oct; 180(19):5165-72. PubMed ID: 9748451
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction.
    Rosenzweig R; Moradi S; Zarrine-Afsar A; Glover JR; Kay LE
    Science; 2013 Mar; 339(6123):1080-3. PubMed ID: 23393091
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conformational stability of the full-atom hexameric model of the ClpB chaperone from Escherichia coli.
    Zietkiewicz S; Slusarz MJ; Slusarz R; Liberek K; Rodziewicz-Motowidło S
    Biopolymers; 2010 Jan; 93(1):47-60. PubMed ID: 19714768
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 ClpB N-terminal domain.
    Li J; Sha B
    Acta Crystallogr D Biol Crystallogr; 2001 Dec; 57(Pt 12):1933-5. PubMed ID: 11717522
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DnaK from Vibrio proteolyticus: complementation of a dnaK-null mutant of Escherichia coli and the role of its ATPase domain.
    Yoshimune K; Galkin A; Kulakova L; Yoshimura T; Esaki N
    J Biosci Bioeng; 2005 Feb; 99(2):136-42. PubMed ID: 16233770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of a chaperone ClpB homologue of Paracoccidioides brasiliensis.
    Jesuino RS; Azevedo MO; Felipe MS; Pereira M; De Almeida Soares CM
    Yeast; 2002 Aug; 19(11):963-72. PubMed ID: 12125053
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conformational properties of aggregated polypeptides determine ClpB-dependence in the disaggregation process.
    Lewandowska A; Matuszewska M; Liberek K
    J Mol Biol; 2007 Aug; 371(3):800-11. PubMed ID: 17588600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrostatic interactions between middle domain motif-1 and the AAA1 module of the bacterial ClpB chaperone are essential for protein disaggregation.
    Sugita S; Watanabe K; Hashimoto K; Niwa T; Uemura E; Taguchi H; Watanabe YH
    J Biol Chem; 2018 Dec; 293(50):19228-19239. PubMed ID: 30327424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y; Reinstein J
    J Mol Biol; 2001 Nov; 314(1):167-78. PubMed ID: 11724541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates.
    Szabo A; Korszun R; Hartl FU; Flanagan J
    EMBO J; 1996 Jan; 15(2):408-17. PubMed ID: 8617216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.