BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14640692)

  • 61. The periplasmic domains of Escherichia coli HflKC oligomerize through right-handed coiled-coil interactions.
    Briere LK; Dunn SD
    Biochemistry; 2006 Jul; 45(28):8607-16. PubMed ID: 16834335
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Insights into dimerization and four-helix bundle formation found by dissection of the dimer interface of the GrpE protein from Escherichia coli.
    Mehl AF; Heskett LD; Jain SS; Demeler B
    Protein Sci; 2003 Jun; 12(6):1205-15. PubMed ID: 12761391
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system.
    Doyle SM; Hoskins JR; Wickner S
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11138-44. PubMed ID: 17545305
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB.
    Lee S; Choi JM; Tsai FT
    Mol Cell; 2007 Jan; 25(2):261-71. PubMed ID: 17244533
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Core residue replacements cause coiled-coil orientation switching in vitro and in vivo: structure-function correlations for osmosensory transporter ProP.
    Tsatskis Y; Kwok SC; Becker E; Gill C; Smith MN; Keates RA; Hodges RS; Wood JM
    Biochemistry; 2008 Jan; 47(1):60-72. PubMed ID: 18076193
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Stutter in the Coiled-Coil Domain of
    Upadhyay T; Potteth US; Karekar VV; Saraogi I
    Biochemistry; 2021 May; 60(17):1356-1367. PubMed ID: 33881310
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Mutation clpA::kan in gene encoding the chaperone of Hsp100-family decreases DnaK-dependent refolding efficiency of proteins in Escherichia coli cells].
    Kotova VIu; Manukhov iV; Mel'kina OE; Zavil'gel'skiĭ GB
    Mol Biol (Mosk); 2008; 42(6):1018-22. PubMed ID: 19140322
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sugarcane Hsp101 is a hexameric chaperone that binds nucleotides.
    Cagliari TC; da Silva VC; Borges JC; Prando A; Tasic L; Ramos CH
    Int J Biol Macromol; 2011 Dec; 49(5):1022-30. PubMed ID: 21903129
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity.
    Doyle SM; Shorter J; Zolkiewski M; Hoskins JR; Lindquist S; Wickner S
    Nat Struct Mol Biol; 2007 Feb; 14(2):114-22. PubMed ID: 17259993
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Probing dimer interface stabilization within a four-helix bundle of the GrpE protein from Escherichia coli via internal deletion mutants: conversion of a dimer to monomer.
    Mehl AF; U G N; Ahmed Z; Wells A; Spyratos TD
    Int J Biol Macromol; 2011 May; 48(4):627-33. PubMed ID: 21315107
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of Brucella suis clpB and clpAB mutants and participation of the genes in stress responses.
    Ekaza E; Teyssier J; Ouahrani-Bettache S; Liautard JP; Köhler S
    J Bacteriol; 2001 Apr; 183(8):2677-81. PubMed ID: 11274130
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis.
    Shih CJ; Lai MC
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2572-2583. PubMed ID: 17660421
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system.
    Lee U; Wie C; Escobar M; Williams B; Hong SW; Vierling E
    Plant Cell; 2005 Feb; 17(2):559-71. PubMed ID: 15659638
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from Escherichia coli.
    Ranaweera CB; Glaza P; Yang T; Zolkiewski M
    Arch Biochem Biophys; 2018 Oct; 655():12-17. PubMed ID: 30092228
    [TBL] [Abstract][Full Text] [Related]  

  • 75. New insights into structural and functional relationships between LonA proteases and ClpB chaperones.
    Rotanova TV; Andrianova AG; Kudzhaev AM; Li M; Botos I; Wlodawer A; Gustchina A
    FEBS Open Bio; 2019 Sep; 9(9):1536-1551. PubMed ID: 31237118
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural and functional conversion of molecular chaperone ClpB from the gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress.
    Sugimoto S; Yoshida H; Mizunoe Y; Tsuruno K; Nakayama J; Sonomoto K
    J Bacteriol; 2006 Dec; 188(23):8070-8. PubMed ID: 16997952
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The S helix mediates signal transmission as a HAMP domain coiled-coil extension in the NarX nitrate sensor from Escherichia coli K-12.
    Stewart V; Chen LL
    J Bacteriol; 2010 Feb; 192(3):734-45. PubMed ID: 19966007
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biochemical coupling of the two nucleotide binding domains of ClpB: covalent linkage is not a prerequisite for chaperone activity.
    Beinker P; Schlee S; Auvula R; Reinstein J
    J Biol Chem; 2005 Nov; 280(45):37965-73. PubMed ID: 16162497
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain.
    Tai LJ; McFall SM; Huang K; Demeler B; Fox SG; Brubaker K; Radhakrishnan I; Morimoto RI
    J Biol Chem; 2002 Jan; 277(1):735-45. PubMed ID: 11679589
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The truncated form of the bacterial heat shock protein ClpB/HSP100 contributes to development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942.
    Clarke AK; Eriksson MJ
    J Bacteriol; 2000 Dec; 182(24):7092-6. PubMed ID: 11092876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.