These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 14640692)

  • 101. Real-time assessment of possible electromagnetic-field-induced changes in protein conformation and thermal stability.
    Beyer C; Christen P; Jelesarov I; Fröhlich J
    Bioelectromagnetics; 2014 Oct; 35(7):470-8. PubMed ID: 25123495
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Comprehensive structural characterization of the human AAA+ disaggregase CLPB in the apo- and substrate-bound states reveals a unique mode of action driven by oligomerization.
    Wu D; Liu Y; Dai Y; Wang G; Lu G; Chen Y; Li N; Lin J; Gao N
    PLoS Biol; 2023 Feb; 21(2):e3001987. PubMed ID: 36745679
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Comparative analysis of the cDNA encoding a ClpA homologue of Paracoccidioides brasiliensis.
    Camargos Oliveira J; Da Silva Castro N; Soares Felipe MS; Pereira M; De Almeida Soares CM
    Mycol Res; 2005 Jun; 109(Pt 6):707-16. PubMed ID: 16080393
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine.
    Singh A; Grover A
    Plant Mol Biol; 2010 Nov; 74(4-5):395-404. PubMed ID: 20811767
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small-molecule inhibitors.
    Singh P; Khurana H; Yadav SP; Dhiman K; Singh P; Ashish ; Singh R; Sharma D
    Int J Biol Macromol; 2020 Dec; 165(Pt A):375-387. PubMed ID: 32987071
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Purification and structural characterization of human ERp29.
    Zheng J; Liu X; Yan X; Dai L; Ji C
    Protein Pept Lett; 2006; 13(8):753-9. PubMed ID: 17073718
    [TBL] [Abstract][Full Text] [Related]  

  • 107. The N-terminal heptad repeat region of reovirus cell attachment protein sigma 1 is responsible for sigma 1 oligomer stability and possesses intrinsic oligomerization function.
    Leone G; Duncan R; Mah DC; Price A; Cashdollar LW; Lee PW
    Virology; 1991 May; 182(1):336-45. PubMed ID: 2024469
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Role of different domains in the self-association of rat nucleoporin p62.
    Buss F; Kent H; Stewart M; Bailer SM; Hanover JA
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():631-8. PubMed ID: 8207085
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Determination of sedimentation coefficients for small peptides.
    Schuck P; MacPhee CE; Howlett GJ
    Biophys J; 1998 Jan; 74(1):466-74. PubMed ID: 9449347
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Role of ClpB From
    Huang M; Zhao Y; Feng L; Zhu L; Zhan L; Chen X
    Front Microbiol; 2020; 11():1660. PubMed ID: 32765470
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Structural properties of the human respiratory syncytial virus P protein: evidence for an elongated homotetrameric molecule that is the smallest orthologue within the family of paramyxovirus polymerase cofactors.
    Llorente MT; Taylor IA; López-Viñas E; Gomez-Puertas P; Calder LJ; García-Barreno B; Melero JA
    Proteins; 2008 Aug; 72(3):946-58. PubMed ID: 18300250
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions.
    Duran EC; Weaver CL; Lucius AL
    Front Mol Biosci; 2017; 4():54. PubMed ID: 28824920
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Low-complexity sequences and single amino acid repeats: not just "junk" peptide sequences.
    Haerty W; Golding GB
    Genome; 2010 Oct; 53(10):753-62. PubMed ID: 20962881
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Bioinformatic identification of ClpI, a distinct class of Clp unfoldases in Actinomycetota.
    Jiang J; Schmitz KR
    Front Microbiol; 2023; 14():1161764. PubMed ID: 37138635
    [TBL] [Abstract][Full Text] [Related]  

  • 115. [Mapping of regulatory domain of T-protein from Escherichia coli].
    Zhang H; Chen SQ
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2005 Mar; 34(2):181-4. PubMed ID: 15812896
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Reconstruction of Three-Dimensional Conformations of Bacterial ClpB from High-Speed Atomic-Force-Microscopy Images.
    Dasgupta B; Miyashita O; Uchihashi T; Tama F
    Front Mol Biosci; 2021; 8():704274. PubMed ID: 34422905
    [TBL] [Abstract][Full Text] [Related]  

  • 117. ClpB is the Escherichia coli heat shock protein F84.1.
    Squires CL; Pedersen S; Ross BM; Squires C
    J Bacteriol; 1991 Jul; 173(14):4254-62. PubMed ID: 2066329
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Use of CRISPR interference for efficient and rapid gene inactivation in
    Zhou P; G C B; Stolte F; Wu C
    Appl Environ Microbiol; 2024 Feb; 90(2):e0166523. PubMed ID: 38185820
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Development of heat-shock resistance in
    Liang J; Cameron G; Faucher SP
    Appl Environ Microbiol; 2023 Sep; 89(9):e0066623. PubMed ID: 37668382
    [TBL] [Abstract][Full Text] [Related]  

  • 120. ESKAPE Pathogens: Looking at Clp ATPases as Potential Drug Targets.
    Motiwala T; Mthethwa Q; Achilonu I; Khoza T
    Antibiotics (Basel); 2022 Sep; 11(9):. PubMed ID: 36139999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.