These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 14640697)
61. Escherichia coli expression and characterization of cytochromes P450 2B11, 2B1, and 2B5. John GH; Hasler JA; He YA; Halpert JR Arch Biochem Biophys; 1994 Nov; 314(2):367-75. PubMed ID: 7979377 [TBL] [Abstract][Full Text] [Related]
62. N-terminal truncated cytochrome P450 2B4: catalytic activities and reduction with alternative electron sources. Shumyantseva VV; Bulko TV; Alexandrova SA; Sokolov NN; Schmid RD; Bachmann T; Archakov AI Biochem Biophys Res Commun; 1999 Oct; 263(3):678-80. PubMed ID: 10512738 [TBL] [Abstract][Full Text] [Related]
63. Regioselective hydroxylation of steroid hormones by human cytochromes P450. Niwa T; Murayama N; Imagawa Y; Yamazaki H Drug Metab Rev; 2015 May; 47(2):89-110. PubMed ID: 25678418 [TBL] [Abstract][Full Text] [Related]
64. Identification of a fungal cytochrome P450 with steroid two-step ordered selective hydroxylation characteristics in Colletotrichum lini. He P; Li H; Sun J; Zhang X; Gong J; Shi J; Xu Z J Steroid Biochem Mol Biol; 2022 Jun; 220():106096. PubMed ID: 35301115 [TBL] [Abstract][Full Text] [Related]
65. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). Mast N; Lin JB; Anderson KW; Bjorkhem I; Pikuleva IA PLoS One; 2017; 12(10):e0187168. PubMed ID: 29073233 [TBL] [Abstract][Full Text] [Related]
66. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. Lund EG; Xie C; Kotti T; Turley SD; Dietschy JM; Russell DW J Biol Chem; 2003 Jun; 278(25):22980-8. PubMed ID: 12686551 [TBL] [Abstract][Full Text] [Related]
67. Transcription of cytochrome P450 46A1 in NIH3T3 cells is negatively regulated by FBS. Shinohara Y; Ando H; Maekawa M; Arai M; Horibata Y; Satou M; Jojima T; Usui I; Aso Y; Sugimoto H Biochim Biophys Acta Mol Cell Biol Lipids; 2022 Jun; 1867(6):159136. PubMed ID: 35306146 [TBL] [Abstract][Full Text] [Related]
68. Metabolism of 27-, 25- and 24-hydroxycholesterol in rat glial cells and neurons. Zhang J; Akwa Y; el-Etr M; Baulieu EE; Sjövall J Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):175-84. PubMed ID: 9078259 [TBL] [Abstract][Full Text] [Related]
69. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. Fujita S; Ohnishi T; Watanabe B; Yokota T; Takatsuto S; Fujioka S; Yoshida S; Sakata K; Mizutani M Plant J; 2006 Mar; 45(5):765-74. PubMed ID: 16460510 [TBL] [Abstract][Full Text] [Related]
70. Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels. Cui YL; Zhang JL; Zheng QC; Niu RJ; Xu Y; Zhang HX; Sun CC Chemistry; 2013 Jan; 19(2):549-57. PubMed ID: 23180418 [TBL] [Abstract][Full Text] [Related]
71. Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases. Pikuleva IA Explor Neuroprotective Ther; 2021 Dec; 1(3):159-172. PubMed ID: 35156102 [TBL] [Abstract][Full Text] [Related]
72. Novel sterols synthesized via the CYP27A1 metabolic pathway. Pikuleva I; Javitt NB Arch Biochem Biophys; 2003 Dec; 420(1):35-9. PubMed ID: 14622972 [TBL] [Abstract][Full Text] [Related]
73. Biotransformation of Cholesterol and 16α,17α-Epoxypregnenolone and Isolation of Hydroxylase in Burkholderia cepacia SE-1. Zhu X; Pang C; Cao Y; Fan D Biomed Res Int; 2016; 2016():5727631. PubMed ID: 27340662 [TBL] [Abstract][Full Text] [Related]
74. Cytochrome P450 7A1 cholesterol 7alpha-hydroxylation: individual reaction steps in the catalytic cycle and rate-limiting ferric iron reduction. Shinkyo R; Guengerich FP J Biol Chem; 2011 Feb; 286(6):4632-43. PubMed ID: 21147774 [TBL] [Abstract][Full Text] [Related]
75. Cholestenoic Acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Mast N; Reem R; Bederman I; Huang S; DiPatre PL; Bjorkhem I; Pikuleva IA Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):594-603. PubMed ID: 20881306 [TBL] [Abstract][Full Text] [Related]
76. Removal of cholesterol from extrahepatic sources by oxidative mechanisms. Björkhem I; Diczfalusy U; Lütjohann D Curr Opin Lipidol; 1999 Apr; 10(2):161-5. PubMed ID: 10327284 [TBL] [Abstract][Full Text] [Related]
77. On the fluxes of side-chain oxidized oxysterols across blood-brain and blood-CSF barriers and origin of these steroids in CSF (Review). Björkhem I; Leoni V; Svenningsson P J Steroid Biochem Mol Biol; 2019 Apr; 188():86-89. PubMed ID: 30586624 [TBL] [Abstract][Full Text] [Related]
78. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond. Moutinho M; Nunes MJ; Rodrigues E Biochim Biophys Acta; 2016 Dec; 1861(12 Pt A):1911-1920. PubMed ID: 27663182 [TBL] [Abstract][Full Text] [Related]
79. A simple and rapid method to measure cholesterol binding to P450s and other proteins. Mast N; Pikuleva IA J Lipid Res; 2005 Jul; 46(7):1561-8. PubMed ID: 15834119 [TBL] [Abstract][Full Text] [Related]
80. Cholesterol hydroperoxides as substrates for cholesterol-metabolizing cytochrome P450 enzymes and alternative sources of 25-hydroxycholesterol and other oxysterols. van Lier JE; Mast N; Pikuleva IA Angew Chem Int Ed Engl; 2015 Sep; 54(38):11138-42. PubMed ID: 26230055 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]