BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14641480)

  • 21. QTL mapping analysis of maize plant type based on SNP molecular marker.
    Zhu W; Zhao Y; Liu J; Huang L; Lu X; Kang D
    Cell Mol Biol (Noisy-le-grand); 2019 Feb; 65(2):18-27. PubMed ID: 30860467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mapping of quantitative trait loci for drought tolerance in maize plants.
    Rahman H; Pekic S; Lazic-Jancic V; Quarrie SA; Shah SM; Pervez A; Shah MM
    Genet Mol Res; 2011 May; 10(2):889-901. PubMed ID: 21644206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-sequential detection of quantitative trait loci and candidate genes underlying the dynamic growth of Salix suchowensis.
    Wei S; Yang G; Yang Y; Yin T
    Tree Physiol; 2022 Apr; 42(4):877-890. PubMed ID: 34761273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.)].
    Yuan AP; Cao LY; Zhuang JY; Li RZ; Zheng KL; Zhu J; Cheng SH
    Yi Chuan Xue Bao; 2003 Oct; 30(10):899-906. PubMed ID: 14669505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat.
    Gervais L; Dedryver F; Morlais JY; Bodusseau V; Negre S; Bilous M; Groos C; Trottet M
    Theor Appl Genet; 2003 Apr; 106(6):961-70. PubMed ID: 12671743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic mapping of maize stripe disease resistance from the Mascarene source.
    Dintinger J; Verger D; Caiveau S; Risterucci AM; Gilles J; Chiroleu F; Courtois B; Reynaud B; Hamon P
    Theor Appl Genet; 2005 Jul; 111(2):347-59. PubMed ID: 15912344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spring Is Coming: Genetic Analyses of the Bud Break Date Locus Reveal Candidate Genes From the Cold Perception Pathway to Dormancy Release in Apple (
    Miotto YE; Tessele C; Czermainski ABC; Porto DD; Falavigna VDS; Sartor T; Cattani AM; Delatorre CA; de Alencar SA; da Silva-Junior OB; Togawa RC; Costa MMDC; Pappas GJ; Grynberg P; de Oliveira PRD; Kvitschal MV; Denardi F; Buffon V; Revers LF
    Front Plant Sci; 2019; 10():33. PubMed ID: 30930909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QTL of three agronomically important traits and their interactions with environment in a European x Chinese rapeseed population.
    Zhao JY; Becker HC; Ding HD; Zhang YF; Zhang DQ; Ecke W
    Yi Chuan Xue Bao; 2005 Sep; 32(9):969-78. PubMed ID: 16201242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers.
    Perez-Lara E; Semagn K; Chen H; Iqbal M; N'Diaye A; Kamran A; Navabi A; Pozniak C; Spaner D
    PLoS One; 2016; 11(8):e0160623. PubMed ID: 27513976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate.
    Olson MS; Levsen N; Soolanayakanahally RY; Guy RD; Schroeder WR; Keller SR; Tiffin P
    Mol Ecol; 2013 Mar; 22(5):1214-30. PubMed ID: 23094714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new intervarietal linkage map and its application for quantitative trait locus analysis of "gigas" features in bread wheat.
    Suenaga K; Khairallah M; William HM; Hoisington DA
    Genome; 2005 Feb; 48(1):65-75. PubMed ID: 15729398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 × Beinong6.
    Wu QH; Chen YX; Zhou SH; Fu L; Chen JJ; Xiao Y; Zhang D; Ouyang SH; Zhao XJ; Cui Y; Zhang DY; Liang Y; Wang ZZ; Xie JZ; Qin JX; Wang GX; Li DL; Huang YL; Yu MH; Lu P; Wang LL; Wang L; Wang H; Dang C; Li J; Zhang Y; Peng HR; Yuan CG; You MS; Sun QX; Wang JR; Wang LX; Luo MC; Han J; Liu ZY
    PLoS One; 2015; 10(2):e0118144. PubMed ID: 25675376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).
    Castède S; Campoy JA; Le Dantec L; Quero-García J; Barreneche T; Wenden B; Dirlewanger E
    PLoS One; 2015; 10(11):e0143250. PubMed ID: 26587668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a Differentially Expressed TIR-NBS-LRR Gene in a Major QTL Associated to Leaf Rust Resistance in Salix.
    Martin T; Rönnberg-Wästljung AC; Stenlid J; Samils B
    PLoS One; 2016; 11(12):e0168776. PubMed ID: 28002449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative trait loci for phyllochron and tillering in rice.
    Miyamoto N; Goto Y; Matsui M; Ukai Y; Morita M; Nemoto K
    Theor Appl Genet; 2004 Aug; 109(4):700-6. PubMed ID: 15221143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.).
    Huang L; Ren X; Wu B; Li X; Chen W; Zhou X; Chen Y; Pandey MK; Jiao Y; Luo H; Lei Y; Varshney RK; Liao B; Jiang H
    Sci Rep; 2016 Dec; 6():39478. PubMed ID: 27995991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping quantitative trait loci for plant height in wheat (Triticum aestivum L.) using a F2:3 population.
    Liu DC; Gao MQ; Guan RX; Li RZ; Cao SH; Guo XL; Zhang AM
    Yi Chuan Xue Bao; 2002; 29(8):706-11. PubMed ID: 12200862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of QTLs for harvest index and source-sink characters in a DH population of rice (Oryza sativa L.).
    Mao BB; Cai WJ; Zhang ZH; Hu ZL; Li P; Zhu LH; Zhu YG
    Yi Chuan Xue Bao; 2003 Dec; 30(12):1118-26. PubMed ID: 14986429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.).
    Pucholt P; Rönnberg-Wästljung AC; Berlin S
    Heredity (Edinb); 2015 Jun; 114(6):575-83. PubMed ID: 25649501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.
    Salmon J; Ward SP; Hanley SJ; Leyser O; Karp A
    Plant Biotechnol J; 2014 May; 12(4):480-91. PubMed ID: 24393130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.