BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14641919)

  • 1. The relationship between wall shear stress distributions and intimal thickening in the human abdominal aorta.
    Bonert M; Leask RL; Butany J; Ethier CR; Myers JG; Johnston KW; Ojha M
    Biomed Eng Online; 2003 Nov; 2():18. PubMed ID: 14641919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults.
    Pedersen EM; Agerbaek M; Kristensen IB; Yoganathan AP
    Eur J Vasc Endovasc Surg; 1997 May; 13(5):443-51. PubMed ID: 9166266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo.
    Pedersen EM; Oyre S; Agerbaek M; Kristensen IB; Ringgaard S; Boesiger P; Paaske WP
    Eur J Vasc Endovasc Surg; 1999 Oct; 18(4):328-33. PubMed ID: 10550268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intimal thickness is not associated with wall shear stress patterns in the human right coronary artery.
    Joshi AK; Leask RL; Myers JG; Ojha M; Butany J; Ethier CR
    Arterioscler Thromb Vasc Biol; 2004 Dec; 24(12):2408-13. PubMed ID: 15472129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific aortic wall shear stress estimations using semi-automatic segmentation.
    Renner J; Nadali Najafabadi H; Modin D; Länne T; Karlsson M
    Clin Physiol Funct Imaging; 2012 Nov; 32(6):481-91. PubMed ID: 23031070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circumferential wall tension due to hypertension plays a pivotal role in aorta remodelling.
    Prado CM; Rossi MA
    Int J Exp Pathol; 2006 Dec; 87(6):425-36. PubMed ID: 17222210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis.
    Moore JE; Xu C; Glagov S; Zarins CK; Ku DN
    Atherosclerosis; 1994 Oct; 110(2):225-40. PubMed ID: 7848371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related increase in wall stress of the human abdominal aorta: an in vivo study.
    Astrand H; Rydén-Ahlgren A; Sandgren T; Länne T
    J Vasc Surg; 2005 Nov; 42(5):926-31. PubMed ID: 16275449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow patterns and wall shear stresses in patient-specific models of the abdominal aortic aneurysm.
    Leung J; Wright A; Cheshire N; Thom SA; Hughes AD; Xu XY
    Stud Health Technol Inform; 2004; 103():235-42. PubMed ID: 15747926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic effects on atherosclerosis-prone coronary artery: wall shear stress/rate distribution and impedance phase angle in coronary and aortic circulation.
    Lee BK; Kwon HM; Hong BK; Park BE; Suh SH; Cho MT; Lee CS; Kim MC; Kim CJ; Yoo SS; Kim HS
    Yonsei Med J; 2001 Aug; 42(4):375-83. PubMed ID: 11519078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An unexpected paradox: wall shear stress in the aorta is less in patients with severe atherosclerosis regardless of obesity.
    Qaisar S; Brodsky LD; Barth RF; Leier C; Buja LM; Yildiz V; Mo X; Allenby P; Moore S; Ivanov I; Chen W; Thomas D; Rivera AC; Gamble D; Hartage R; Mao G; Sheldon J; Sinclair D; Vazzano J; Zehr B; Patton A; Brodsky SV
    Cardiovasc Pathol; 2021; 51():107313. PubMed ID: 33242600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the importance of tunica intima in the aging aorta: a three-layered in silico model for computing wall stresses in abdominal aortic aneurysms.
    de Lucio M; García MF; García JD; Rodríguez LER; Marcos FÁ
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):467-484. PubMed ID: 33090043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta.
    Horný L; Netušil M; Voňavková T
    Biomech Model Mechanobiol; 2014 Aug; 13(4):783-99. PubMed ID: 24136338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of wall shear stress in the aorta with the use of MR phase velocity mapping.
    Oshinski JN; Ku DN; Mukundan S; Loth F; Pettigrew RI
    J Magn Reson Imaging; 1995; 5(6):640-7. PubMed ID: 8748480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D; Chen JY
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction.
    Buchanan JR; Kleinstreuer C; Truskey GA; Lei M
    Atherosclerosis; 1999 Mar; 143(1):27-40. PubMed ID: 10208478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta.
    Oyre S; Pedersen EM; Ringgaard S; Boesiger P; Paaske WP
    Eur J Vasc Endovasc Surg; 1997 Mar; 13(3):263-71. PubMed ID: 9129599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.