These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 14642296)

  • 1. Ear advantage and consonance of dichotic pitch intervals in absolute-pitch possessors.
    Itoh K; Miyazaki K; Nakada T
    Brain Cogn; 2003 Dec; 53(3):464-71. PubMed ID: 14642296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ear Advantage for Musical Location and Relative Pitch: Effects of Musical Training and Attention.
    Hutchison JL; Hubbard TL; Hubbard NA; Rypma B
    Perception; 2017 Jun; 46(6):745-762. PubMed ID: 28523983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pitch, periodicity, and auditory organization.
    Hartmann WM
    J Acoust Soc Am; 1996 Dec; 100(6):3491-502. PubMed ID: 8969472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of stimulus intensity on the right ear advantage in dichotic listening.
    Hugdahl K; Westerhausen R; Alho K; Medvedev S; Hämäläinen H
    Neurosci Lett; 2008 Jan; 431(1):90-4. PubMed ID: 18162310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals.
    González-García N; González MA; Rendón PL
    Brain Res; 2016 Jul; 1643():59-69. PubMed ID: 27134038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.
    Bidelman GM; Krishnan A
    J Neurosci; 2009 Oct; 29(42):13165-71. PubMed ID: 19846704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute pitch correlates with high performance on interval naming tasks.
    Dooley K; Deutsch D
    J Acoust Soc Am; 2011 Dec; 130(6):4097-104. PubMed ID: 22225064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical processing of musical consonance: an evoked potential study.
    Itoh K; Suwazono S; Nakada T
    Neuroreport; 2003 Dec; 14(18):2303-6. PubMed ID: 14663180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing.
    Bidelman GM; Heinz MG
    J Acoust Soc Am; 2011 Sep; 130(3):1488-502. PubMed ID: 21895089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of spatial complexity in the perception of speech and pure tones in dichotic listening.
    Murray J
    Brain Cogn; 1986 Oct; 5(4):452-64. PubMed ID: 3580188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Musicians and non-musicians' different reliance of features in consonance perception: a behavioral and ERP study.
    Kung CC; Hsieh TH; Liou JY; Lin KJ; Shaw FZ; Liang SF
    Clin Neurophysiol; 2014 May; 125(5):971-8. PubMed ID: 24252396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory and nonsensory influences on children's performance of dichotic pitch perception tasks.
    Edwards VT; Giaschi DE; Low P; Edgell D
    J Acoust Soc Am; 2005 May; 117(5):3157-64. PubMed ID: 15957783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional cerebral asymmetries of pitch processing during dichotic stimulus application: a whole-head magnetoencephalography study.
    Mathiak K; Hertrich I; Lutzenberger W; Ackermann H
    Neuropsychologia; 2002; 40(6):585-93. PubMed ID: 11792400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral correlates of hemispheric lateralization during a pitch discrimination task: an ERP study in dichotic situation.
    Wioland N; Rudolf G; Metz-Lutz MN; Mutschler V; Marescaux C
    Clin Neurophysiol; 1999 Mar; 110(3):516-23. PubMed ID: 10363775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex.
    Bidelman GM; Grall J
    Neuroimage; 2014 Nov; 101():204-14. PubMed ID: 25019679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "consonance effect" and the hemispheres: a study on a split-brain patient.
    Prete G; Fabri M; Foschi N; Brancucci A; Tommasi L
    Laterality; 2015 May; 20(3):257-69. PubMed ID: 25256169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dichotic pitch: a new stimulus distinguishes normal and dyslexic auditory function.
    Dougherty RF; Cynader MS; Bjornson BH; Edgell D; Giaschi DE
    Neuroreport; 1998 Sep; 9(13):3001-5. PubMed ID: 9804305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomical differences in the human inferior colliculus relate to the perceived valence of musical consonance and dissonance.
    Fritz TH; Renders W; Müller K; Schmude P; Leman M; Turner R; Villringer A
    Eur J Neurosci; 2013 Oct; 38(7):3099-105. PubMed ID: 23859464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of posterior parietal and dorsal premotor cortices in relative pitch processing: Comparing musical intervals to lexical tones.
    Tsai CG; Chou TL; Li CW
    Neuropsychologia; 2018 Oct; 119():118-127. PubMed ID: 30056054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemispheric asymmetry in the formation of musical pitch expectations: a monaural listening and probe tone study.
    Rosenthal MA
    Neuropsychologia; 2014 Dec; 65():37-40. PubMed ID: 25447063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.