These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

688 related articles for article (PubMed ID: 14642354)

  • 1. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.
    Mahadevan R; Schilling CH
    Metab Eng; 2003 Oct; 5(4):264-76. PubMed ID: 14642354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states.
    Reed JL; Palsson BØ
    Genome Res; 2004 Sep; 14(9):1797-805. PubMed ID: 15342562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained Allocation Flux Balance Analysis.
    Mori M; Hwa T; Martin OC; De Martino A; Marinari E
    PLoS Comput Biol; 2016 Jun; 12(6):e1004913. PubMed ID: 27355325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservation of high-flux backbone in alternate optimal and near-optimal flux distributions of metabolic networks.
    Samal A
    Syst Synth Biol; 2008 Dec; 2(3-4):83-93. PubMed ID: 19484377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.
    Klamt S; Müller S; Regensburger G; Zanghellini J
    Metab Eng; 2018 May; 47():153-169. PubMed ID: 29427605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating optimal profiles of genetic alterations using constraint-based models.
    Gadkar KG; Doyle Iii FJ; Edwards JS; Mahadevan R
    Biotechnol Bioeng; 2005 Jan; 89(2):243-51. PubMed ID: 15593263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary identification of multiple flux distributions and multiple metabolic pathways.
    Lee DY; Fan LT; Park S; Lee SY; Shafie S; Bertók B; Friedler F
    Metab Eng; 2005 May; 7(3):182-200. PubMed ID: 15885617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source and regulation of flux variability in Escherichia coli.
    San Román M; Cancela H; Acerenza L
    BMC Syst Biol; 2014 Jun; 8():67. PubMed ID: 24927772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation.
    Teusink B; Wiersma A; Jacobs L; Notebaart RA; Smid EJ
    PLoS Comput Biol; 2009 Jun; 5(6):e1000410. PubMed ID: 19521528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
    Gonzalez JE; Long CP; Antoniewicz MR
    Metab Eng; 2017 Jan; 39():9-18. PubMed ID: 27840237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum.
    Wiback SJ; Mahadevan R; Palsson BØ
    Biotechnol Bioeng; 2004 May; 86(3):317-31. PubMed ID: 15083512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method.
    Zhao J; Shimizu K
    J Biotechnol; 2003 Mar; 101(2):101-17. PubMed ID: 12568740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of maximum entropy principle with Lagrange multipliers extends the feasibility of elementary mode analysis.
    Zhao Q; Kurata H
    J Biosci Bioeng; 2010 Aug; 110(2):254-61. PubMed ID: 20547341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic construction of metabolic models with enzyme constraints.
    Bekiaris PS; Klamt S
    BMC Bioinformatics; 2020 Jan; 21(1):19. PubMed ID: 31937255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting internal cell fluxes at sub-optimal growth.
    Schultz A; Qutub AA
    BMC Syst Biol; 2015 Apr; 9():18. PubMed ID: 25890056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of flux pre-analysis to enable ¹³C tracer studies in pyruvate kinase-deficient Escherichia coli.
    Meade J; Khan S; Ataai M; Domach M
    Biotechnol J; 2012 Mar; 7(3):449-60. PubMed ID: 22259025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential metabolic phases as a means to optimize cellular output in a constant environment.
    Palinkas A; Bulik S; Bockmayr A; Holzhütter HG
    PLoS One; 2015; 10(3):e0118347. PubMed ID: 25786979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.