These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 14642425)

  • 21. Photic regulation of map kinase phosphatases MKP1/2 and MKP3 in the hamster suprachiasmatic nuclei.
    Pizzio GA; Golombek DA
    J Mol Neurosci; 2008 Feb; 34(2):187-92. PubMed ID: 18058073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian control during the day and night: Role of neuropeptide Y Y5 receptors in the suprachiasmatic nucleus.
    Gamble KL; Ehlen JC; Albers HE
    Brain Res Bull; 2005 May; 65(6):513-9. PubMed ID: 15862923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J; Revel FG; Pévet P; Challet E
    Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuropeptide Y blocks light-induced phase advances but not delays of the circadian activity rhythm in hamsters.
    Weber ET; Rea MA
    Neurosci Lett; 1997 Aug; 231(3):159-62. PubMed ID: 9300646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delta opioid inhibition of light-induced phase advances in hamster circadian activity rhythms.
    Tierno A; Fiore P; Gannon RL
    Brain Res; 2002 May; 937(1-2):66-73. PubMed ID: 12020864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei.
    Iwahana E; Akiyama M; Miyakawa K; Uchida A; Kasahara J; Fukunaga K; Hamada T; Shibata S
    Eur J Neurosci; 2004 Apr; 19(8):2281-7. PubMed ID: 15090054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the intrinsic regulation of neuropeptide Y release in the mammalian suprachiasmatic nucleus circadian clock.
    Glass JD; Guinn J; Kaur G; Francl JM
    Eur J Neurosci; 2010 Mar; 31(6):1117-26. PubMed ID: 20377624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein kinase C inhibition and activation phase advances the hamster circadian clock.
    Schak KM; Harrington ME
    Brain Res; 1999 Sep; 840(1-2):158-61. PubMed ID: 10517964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock.
    O'Keeffe SM; Beynon AL; Davies JS; Moynagh PN; Coogan AN
    Eur J Neurosci; 2017 Apr; 45(8):1111-1123. PubMed ID: 28245070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-photic circadian entrainment in the Syrian hamster is not associated with phosphorylation of the transcriptional regulator CREB within the suprachiasmatic nucleus, but is associated with adrenocortical activation.
    Sumova A; Ebling FJ; Maywood ES; Herbert J; Hastings MH
    Neuroendocrinology; 1994 Jun; 59(6):579-89. PubMed ID: 8084382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dose-dependent effects of androgens on the circadian timing system and its response to light.
    Butler MP; Karatsoreos IN; LeSauter J; Silver R
    Endocrinology; 2012 May; 153(5):2344-52. PubMed ID: 22492303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamster in vitro.
    Watanabe A; Shibata S; Watanabe S
    Brain Res; 1995 Oct; 695(2):237-9. PubMed ID: 8556336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calbindin influences response to photic input in suprachiasmatic nucleus.
    Hamada T; LeSauter J; Lokshin M; Romero MT; Yan L; Venuti JM; Silver R
    J Neurosci; 2003 Oct; 23(26):8820-6. PubMed ID: 14523082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dorsal raphe nuclear stimulation of SCN serotonin release and circadian phase-resetting.
    Glass JD; DiNardo LA; Ehlen JC
    Brain Res; 2000 Mar; 859(2):224-32. PubMed ID: 10719068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cell adhesion molecule EphA4 is involved in circadian clock functions.
    Kiessling S; O'Callaghan EK; Freyburger M; Cermakian N; Mongrain V
    Genes Brain Behav; 2018 Jan; 17(1):82-92. PubMed ID: 28425198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.