BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 14642665)

  • 1. Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function.
    Yang ZR; Thomson R; Hodgman TC; Dry J; Doyle AK; Narayanan A; Wu X
    Biosystems; 2003 Nov; 72(1-2):159-76. PubMed ID: 14642665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced bio-basis function neural networks for protease cleavage site prediction.
    Yang ZR; Berry EA
    J Bioinform Comput Biol; 2004 Sep; 2(3):511-31. PubMed ID: 15359424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing proteolytic cleavage site activity using bio-basis function neural networks.
    Thomson R; Hodgman TC; Yang ZR; Doyle AK
    Bioinformatics; 2003 Sep; 19(14):1741-7. PubMed ID: 14512344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining HIV protease cleavage data using genetic programming with a sum-product function.
    Yang ZR; Dalby AR; Qiu J
    Bioinformatics; 2004 Dec; 20(18):3398-405. PubMed ID: 15256407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why neural networks should not be used for HIV-1 protease cleavage site prediction.
    Rögnvaldsson T; You L
    Bioinformatics; 2004 Jul; 20(11):1702-9. PubMed ID: 14988129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining SARS-CoV protease cleavage data using non-orthogonal decision trees: a novel method for decisive template selection.
    Yang ZR
    Bioinformatics; 2005 Jun; 21(11):2644-50. PubMed ID: 15797903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-basis function neural network for prediction of protease cleavage sites in proteins.
    Yang ZR; Thomson R
    IEEE Trans Neural Netw; 2005 Jan; 16(1):263-74. PubMed ID: 15732405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks.
    Yang ZR
    Bioinformatics; 2005 May; 21(9):1831-7. PubMed ID: 15671118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining viral protease data to extract cleavage knowledge.
    Narayanan A; Wu X; Yang ZR
    Bioinformatics; 2002; 18 Suppl 1():S5-13. PubMed ID: 12169525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PoPS: a computational tool for modeling and predicting protease specificity.
    Boyd SE; Pike RN; Rudy GB; Whisstock JC; Garcia de la Banda M
    J Bioinform Comput Biol; 2005 Jun; 3(3):551-85. PubMed ID: 16108084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information.
    Ahmad S; Gromiha MM; Sarai A
    Bioinformatics; 2004 Mar; 20(4):477-86. PubMed ID: 14990443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probabilistic peptide machine for predicting hepatitis C virus protease cleavage sites.
    Yang ZR
    IEEE Trans Inf Technol Biomed; 2007 Sep; 11(5):593-5. PubMed ID: 17912976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to prediction of short-range conformational propensities in proteins.
    Gront D; Kolinski A
    Bioinformatics; 2005 Apr; 21(7):981-7. PubMed ID: 15509604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules.
    Peters B; Tong W; Sidney J; Sette A; Weng Z
    Bioinformatics; 2003 Sep; 19(14):1765-72. PubMed ID: 14512347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust sequence alignment using evolutionary rates coupled with an amino acid substitution matrix.
    Ndhlovu A; Hazelhurst S; Durand PM
    BMC Bioinformatics; 2015 Aug; 16():255. PubMed ID: 26269100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CASVM: web server for SVM-based prediction of caspase substrates cleavage sites.
    Wee LJ; Tan TW; Ranganathan S
    Bioinformatics; 2007 Dec; 23(23):3241-3. PubMed ID: 17599937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of human immunodeficiency virus protease cleavage sites in proteins.
    Chou KC
    Anal Biochem; 1996 Jan; 233(1):1-14. PubMed ID: 8789141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPEPlip: the detection of signal peptide and lipoprotein cleavage sites.
    Fariselli P; Finocchiaro G; Casadio R
    Bioinformatics; 2003 Dec; 19(18):2498-9. PubMed ID: 14668245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleavage specificity of the subtilisin-like protease C1 from soybean.
    Boyd PM; Barnaby N; Tan-Wilson A; Wilson KA
    Biochim Biophys Acta; 2002 Apr; 1596(2):269-82. PubMed ID: 12007608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein structural class with Rough Sets.
    Cao Y; Liu S; Zhang L; Qin J; Wang J; Tang K
    BMC Bioinformatics; 2006 Jan; 7():20. PubMed ID: 16412240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.