These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 14642909)

  • 1. Studies on electrochemical properties and scavenge of superoxide anion in aprotic media by using carbon nanotubes powder microelectrode.
    Wei Y; Ji X; Dang X; Hu S
    Bioelectrochemistry; 2003 Oct; 61(1-2):51-6. PubMed ID: 14642909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode.
    Salimi A; Noorbakhsh A; Ghadermarz M
    Anal Biochem; 2005 Sep; 344(1):16-24. PubMed ID: 16039977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of carbon nanotubes: free radical generation or scavenging activity?
    Fenoglio I; Tomatis M; Lison D; Muller J; Fonseca A; Nagy JB; Fubini B
    Free Radic Biol Med; 2006 Apr; 40(7):1227-33. PubMed ID: 16545691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of reaction of ebselen with superoxide in aprotic solvents as examined by cyclic voltammetry and ESR.
    Araki T; Kitaoka H
    Chem Pharm Bull (Tokyo); 2001 May; 49(5):541-5. PubMed ID: 11383603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes.
    Liu Q; Lu X; Li J; Yao X; Li J
    Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the superoxide anion radical scavenging activity by tetracycline antibiotics in aprotic media.
    Kładna A; Kruk I; Michalska T; Berczyński P; Aboul-Enein HY
    Luminescence; 2011; 26(6):611-5. PubMed ID: 21413138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between carbon nanotube structure and electrochemical behavior: heterogeneous electron transfer at electrochemically activated carbon nanotubes.
    Pumera M; Sasaki T; Iwai H
    Chem Asian J; 2008 Dec; 3(12):2046-55. PubMed ID: 18810741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate.
    Salimi A; Kavosi B; Babaei A; Hallaj R
    Anal Chim Acta; 2008 Jun; 618(1):43-53. PubMed ID: 18501244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interface behavior and biocatalytic activity of superoxide dismutase at carbon nanotube.
    Bi YH; Huang ZL; Zhao YD
    Biosens Bioelectron; 2006 Jan; 21(7):1350-4. PubMed ID: 15993046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of Proton-Coupled Electron Transfer from Natural Phenolic Compounds in Superoxide Scavenging.
    Nakayama T; Uno B
    Chem Pharm Bull (Tokyo); 2015; 63(12):967-73. PubMed ID: 26633020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of an oxygen electrode to evaluate superoxide anion-scavenging ability.
    Komagoe K; Takeuchi H; Inoue T; Katsu T
    Anal Sci; 2010; 26(8):903-6. PubMed ID: 20702946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process.
    Lu L; Liang L; Teh KS; Xie Y; Wan Z; Tang Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes.
    Cheng X; Guo H; Zhang Y; Wu X; Liu Y
    Water Res; 2017 Apr; 113():80-88. PubMed ID: 28199865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo monitoring of superoxide anion from Alzheimer's rat brains with functionalized ionic liquid polymer decorated microsensor.
    Peng Q; Yan X; Shi X; Ou S; Gu H; Yin X; Shi G; Yu Y
    Biosens Bioelectron; 2019 Nov; 144():111665. PubMed ID: 31494508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-independent reactive oxygen species (ROS) formation through electron transfer from carboxylated single-walled carbon nanotubes in water.
    Hsieh HS; Wu R; Jafvert CT
    Environ Sci Technol; 2014 Oct; 48(19):11330-6. PubMed ID: 25171301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fullerene-nitrogen doped carbon nanotubes for the direct electrochemistry of hemoglobin and its application in biosensing.
    Sheng Q; Liu R; Zheng J
    Bioelectrochemistry; 2013 Dec; 94():39-46. PubMed ID: 23787095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling.
    Harreither W; Trouillon R; Poulin P; Neri W; Ewing AG; Safina G
    Anal Chem; 2013 Aug; 85(15):7447-53. PubMed ID: 23789970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry.
    Rahimi P; Rafiee-Pour HA; Ghourchian H; Norouzi P; Ganjali MR
    Biosens Bioelectron; 2010 Feb; 25(6):1301-6. PubMed ID: 19914054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
    Zhu L; Zhai J; Yang R; Tian C; Guo L
    Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.