BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 14643179)

  • 1. Phosphatidyl choline fatty acid remodeling in the hepatic cell nuclei.
    Maté SM; Brenner RR; Ves-Losada A
    Prostaglandins Leukot Essent Fatty Acids; 2004 Jan; 70(1):49-57. PubMed ID: 14643179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation and distribution of saturated and unsaturated fatty acids into nuclear lipids of hepatic cells.
    Ves-Losada A; Maté SM; Brenner RR
    Lipids; 2001 Mar; 36(3):273-82. PubMed ID: 11337983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arachidonic acid pools of rat kidney cell nuclei.
    Maté SM; Layerenza JP; Ves-Losada A
    Mol Cell Biochem; 2010 Dec; 345(1-2):259-70. PubMed ID: 20838858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of arachidonic and stearic acids bound to L-FABP into nuclear and endonuclear lipids from rat liver cells.
    Maté SM; Layerenza JP; Ves-Losada A
    Lipids; 2007 Jul; 42(7):589-602. PubMed ID: 17551764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that remodeling of the fatty acids of phosphatidylcholine is regulated in isolated rat hepatocytes and involves both the sn-1 and sn-2 positions.
    Tijburg LB; Samborski RW; Vance DE
    Biochim Biophys Acta; 1991 Sep; 1085(2):184-90. PubMed ID: 1892887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of phospholipid molecular species in isolated liver cells studied by combining fatty acid substrates esterified in the sn-1 and sn-2 positions.
    Woldseth B; Christophersen BO
    Biochim Biophys Acta; 1994 Jun; 1213(1):39-45. PubMed ID: 8011678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of two molecular species of rat brain phosphatidylcholine that rapidly incorporate and turn over arachidonic acid in vivo.
    Shetty HU; Smith QR; Washizaki K; Rapoport SI; Purdon AD
    J Neurochem; 1996 Oct; 67(4):1702-10. PubMed ID: 8858956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of exogenous fatty acids into molecular species of rat hepatocyte phosphatidylcholine.
    Schmid PC; Spimrova I; Schmid HH
    Arch Biochem Biophys; 1995 Oct; 322(2):306-12. PubMed ID: 7574701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytosol-stimulated remodeling of phosphatidylcholine in rat lung microsomes.
    Nijssen JG; van den Bosch H
    Biochim Biophys Acta; 1986 Feb; 875(3):450-7. PubMed ID: 3947653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and remodeling of highly polyunsaturated molecular species of rat hepatocyte phospholipids.
    Schmid PC; Spimrova I; Schmid HH
    Lipids; 1997 Nov; 32(11):1181-7. PubMed ID: 9397404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of delta 5 desaturase substrate (dihomogammalinolenic acid, 20:3 n-6) and product (arachidonic acid 20:4 n-6) into rat liver cell nuclei.
    Ves Losada A; Brenner RR
    Prostaglandins Leukot Essent Fatty Acids; 1998 Jul; 59(1):39-47. PubMed ID: 9758206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dexamethasone on the fatty acid composition of total liver microsomal lipids and phosphatidylcholine molecular species.
    Brenner RR; Ayala S; Garda HA
    Lipids; 2001 Dec; 36(12):1337-45. PubMed ID: 11834086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and remodeling of phospholipid molecular species in rat hepatocytes.
    Schmid PC; Deli E; Schmid HH
    Arch Biochem Biophys; 1995 May; 319(1):168-76. PubMed ID: 7771781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endonuclear lipids in liver cells.
    Maté SM; Brenner RR; Ves-Losada A
    Can J Physiol Pharmacol; 2006; 84(3-4):459-68. PubMed ID: 16902591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of acyl exchange between acyl-CoA and phosphatidylcholine in the remodelling of phosphatidylcholine in microsomal preparations of rat lung.
    Stymne S; Stobart AK
    Biochim Biophys Acta; 1985 Dec; 837(3):239-50. PubMed ID: 2865978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coenzyme A-mediated transacylation of sn-2 fatty acids from phosphatidylcholine in rat lung microsomes.
    Nijssen JG; van den Bosch H
    Biochim Biophys Acta; 1986 Feb; 875(3):458-64. PubMed ID: 3081034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of 1,2-dieicosapentaenoyl-sn-glycero-3-phosphocholine in Caenorhabditis elegans.
    Tanaka T; Izuwa S; Tanaka K; Yamamoto D; Takimoto T; Matsuura F; Satouchi K
    Eur J Biochem; 1999 Jul; 263(1):189-95. PubMed ID: 10429203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of lipids in isolated nuclei from rat thymus and liver cells.
    Kulagina TP; Markevich LN; Kolomiytseva IK; Alessenko AV
    Biochemistry (Mosc); 2003 May; 68(5):570-6. PubMed ID: 12882639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.
    Bafor M; Jonsson L; Stobart AK; Stymne S
    Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.