These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mesostructure from hydration gradients in demosponge biosilica. Neilson JR; George NC; Murr MM; Seshadri R; Morse DE Chemistry; 2014 Apr; 20(17):4956-65. PubMed ID: 24633700 [TBL] [Abstract][Full Text] [Related]
3. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae. Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987 [TBL] [Abstract][Full Text] [Related]
4. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Müller WE; Wang X; Cui FZ; Jochum KP; Tremel W; Bill J; Schröder HC; Natalio F; Schlossmacher U; Wiens M Appl Microbiol Biotechnol; 2009 Jun; 83(3):397-413. PubMed ID: 19430775 [TBL] [Abstract][Full Text] [Related]
5. A synthetic biology approach for the fabrication of functional (fluorescent magnetic) bioorganic-inorganic hybrid materials in sponge primmorphs. Markl JS; Müller WEG; Sereno D; Elkhooly TA; Kokkinopoulou M; Gardères J; Depoix F; Wiens M Biotechnol Bioeng; 2020 Jun; 117(6):1789-1804. PubMed ID: 32068251 [TBL] [Abstract][Full Text] [Related]
6. Some aspects of silica deposition in lithistid demosponge desmas. Pisera A Microsc Res Tech; 2003 Nov; 62(4):312-26. PubMed ID: 14534905 [TBL] [Abstract][Full Text] [Related]
7. Sponge biosilica formation involves syneresis following polycondensation in vivo. Wang X; Schröder HC; Brandt D; Wiens M; Lieberwirth I; Glasser G; Schlossmacher U; Wang S; Müller WE Chembiochem; 2011 Oct; 12(15):2316-24. PubMed ID: 21858907 [TBL] [Abstract][Full Text] [Related]
8. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis. Wang X; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Li J; Kaandorp JA; Götz H; Duschner H; Müller WE J Struct Biol; 2008 Dec; 164(3):270-80. PubMed ID: 18805491 [TBL] [Abstract][Full Text] [Related]
9. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502 [TBL] [Abstract][Full Text] [Related]
10. Electron microscope analyses of the bio-silica basal spicule from the Monorhaphis chuni sponge. Werner P; Blumtritt H; Zlotnikov I; Graff A; Dauphin Y; Fratzl P J Struct Biol; 2015 Aug; 191(2):165-74. PubMed ID: 26094876 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. Müller WE; Kaluzhnaya OV; Belikov SI; Rothenberger M; Schröder HC; Reiber A; Kaandorp JA; Manz B; Mietchen D; Volke F J Struct Biol; 2006 Jan; 153(1):31-41. PubMed ID: 16364658 [TBL] [Abstract][Full Text] [Related]
13. First Report on Chitin in a Non-Verongiid Marine Demosponge: The Mycale euplectellioides Case. Żółtowska-Aksamitowska S; Shaala LA; Youssef DTA; Elhady SS; Tsurkan MV; Petrenko I; Wysokowski M; Tabachnick K; Meissner H; Ivanenko VN; Bechmann N; Joseph Y; Jesionowski T; Ehrlich H Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29461501 [TBL] [Abstract][Full Text] [Related]
14. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578 [TBL] [Abstract][Full Text] [Related]
15. Biogenic inorganic polysilicates (biosilica): formation and biomedical applications. Schröder HC; Wang X; Schloßmacher U; Wiens M; Müller WE Prog Mol Subcell Biol; 2013; 54():197-234. PubMed ID: 24420715 [TBL] [Abstract][Full Text] [Related]
16. Molecular biology of demosponge axial filaments and their roles in biosilicification. Weaver JC; Morse DE Microsc Res Tech; 2003 Nov; 62(4):356-67. PubMed ID: 14534908 [TBL] [Abstract][Full Text] [Related]
17. Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. Schröder HC; Natalio F; Shukoor I; Tremel W; Schlossmacher U; Wang X; Müller WE J Struct Biol; 2007 Sep; 159(3):325-34. PubMed ID: 17336092 [TBL] [Abstract][Full Text] [Related]
18. Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Wysokowski M; Behm T; Born R; Bazhenov VV; Meissner H; Richter G; Szwarc-Rzepka K; Makarova A; Vyalikh D; Schupp P; Jesionowski T; Ehrlich H Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3935-41. PubMed ID: 23910299 [TBL] [Abstract][Full Text] [Related]
19. Tapping mode AFM evidence for an amorphous reticular phase in a condensation-cured hybrid elastomer: alpha,omega-dihydroxypoly(dimethylsiloxane)/poly(diethoxysiloxane)/fumed silica nanoparticles. Ogoshi T; Fujiwara T; Bertolucci M; Galli G; Chiellini E; Chujo Y; Wynne KJ J Am Chem Soc; 2004 Oct; 126(39):12284-5. PubMed ID: 15453759 [TBL] [Abstract][Full Text] [Related]
20. Insights into the structure and morphogenesis of the giant basal spicule of the glass sponge Monorhaphis chuni. Pisera A; Łukowiak M; Masse S; Tabachnick K; Fromont J; Ehrlich H; Bertolino M Front Zool; 2021 Nov; 18(1):58. PubMed ID: 34749755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]