BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 14643411)

  • 1. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms.
    O'Brien TJ; Ceryak S; Patierno SR
    Mutat Res; 2003 Dec; 533(1-2):3-36. PubMed ID: 14643411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium genotoxicity: A double-edged sword.
    Nickens KP; Patierno SR; Ceryak S
    Chem Biol Interact; 2010 Nov; 188(2):276-88. PubMed ID: 20430016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the in vitro genotoxicity of tri- and hexavalent chromium.
    Blasiak J; Kowalik J
    Mutat Res; 2000 Aug; 469(1):135-45. PubMed ID: 10946250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease.
    O'Brien TJ; Jiang G; Chun G; Mandel HG; Westphal CS; Kahen K; Montaser A; States JC; Patierno SR
    Mutat Res; 2006 Nov; 610(1-2):85-92. PubMed ID: 16890479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells.
    O'Brien TJ; Brooks BR; Patierno SR
    Mol Cell Biochem; 2005 Nov; 279(1-2):85-95. PubMed ID: 16283517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells.
    Quievryn G; Peterson E; Messer J; Zhitkovich A
    Biochemistry; 2003 Feb; 42(4):1062-70. PubMed ID: 12549927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium-induced genotoxicity and apoptosis: relationship to chromium carcinogenesis (review).
    Singh J; Carlisle DL; Pritchard DE; Patierno SR
    Oncol Rep; 1998; 5(6):1307-18. PubMed ID: 9769362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster.
    Mishra M; Sharma A; Negi MP; Dwivedi UN; Chowdhuri DK
    Mutat Res; 2011 May; 722(1):44-51. PubMed ID: 21382505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive activation with cysteine represents a chromium(III)-dependent pathway in the induction of genotoxicity by carcinogenic chromium(VI).
    Zhitkovich A; Quievryn G; Messer J; Motylevich Z
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):729-31. PubMed ID: 12426121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair.
    Reynolds M; Stoddard L; Bespalov I; Zhitkovich A
    Nucleic Acids Res; 2007; 35(2):465-76. PubMed ID: 17169990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of particulate hexavalent chromium cytotoxicity and genotoxicity in human and leatherback sea turtle lung cells from a one environmental health perspective.
    Speer RM; Wise SS; Croom-Perez TJ; Aboueissa AM; Martin-Bras M; Barandiaran M; Bermúdez E; Wise JP
    Toxicol Appl Pharmacol; 2019 Aug; 376():70-81. PubMed ID: 31108106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium (VI) activates ataxia telangiectasia mutated (ATM) protein. Requirement of ATM for both apoptosis and recovery from terminal growth arrest.
    Ha L; Ceryak S; Patierno SR
    J Biol Chem; 2003 May; 278(20):17885-94. PubMed ID: 12637545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium (VI) induces both bulky DNA adducts and oxidative DNA damage at adenines and guanines in the p53 gene of human lung cells.
    Arakawa H; Weng MW; Chen WC; Tang MS
    Carcinogenesis; 2012 Oct; 33(10):1993-2000. PubMed ID: 22791815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of
    Santos-Escobar F; Leyva-Sánchez HC; Ramírez-Ramírez N; Obregón-Herrera A; Pedraza-Reyes M
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30745368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Undetectable role of oxidative DNA damage in cell cycle, cytotoxic and clastogenic effects of Cr(VI) in human lung cells with restored ascorbate levels.
    Reynolds M; Armknecht S; Johnston T; Zhitkovich A
    Mutagenesis; 2012 Jul; 27(4):437-43. PubMed ID: 22241526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time‑order effects of vitamin C on hexavalent chromium‑induced mitochondrial damage and DNA‑protein crosslinks in cultured rat peripheral blood lymphocytes.
    Xiao F; Chen D; Luo L; Zhong X; Xie Y; Zou L; Zeng M; Guan L; Zhong C
    Mol Med Rep; 2013 Jul; 8(1):53-60. PubMed ID: 23657841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical role of chromium (Cr)-DNA interactions in the formation of Cr-induced polymerase arresting lesions.
    O'Brien T; Mandel HG; Pritchard DE; Patierno SR
    Biochemistry; 2002 Oct; 41(41):12529-37. PubMed ID: 12369844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexavalent chromium-induced DNA damage and repair mechanisms.
    Wise SS; Holmes AL; Wise JP
    Rev Environ Health; 2008; 23(1):39-57. PubMed ID: 18557597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity.
    Sobol Z; Schiestl RH
    Environ Mol Mutagen; 2012 Mar; 53(2):94-100. PubMed ID: 22020802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae.
    O'Brien TJ; Fornsaglio JL; Ceryak S; Patierno SR
    DNA Repair (Amst); 2002 Aug; 1(8):617-27. PubMed ID: 12509285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.