BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14643488)

  • 1. Hairpin formation in DNA computation presents limits for large NP-complete problems.
    Li D; Huang H; Li X; Li X
    Biosystems; 2003 Dec; 72(3):203-7. PubMed ID: 14643488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalability of the surface-based DNA algorithm for 3-SAT.
    Li D; Li X; Huang H; Li X
    Biosystems; 2006 Aug; 85(2):95-8. PubMed ID: 16423447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of DNA dumbbells. VI. Analysis of optical melting curves of dumbbells with a sixteen-base pair duplex stem and end-loops of variable size and sequence.
    Paner TM; Riccelli PV; Owczarzy R; Benight AS
    Biopolymers; 1996 Dec; 39(6):779-93. PubMed ID: 8946800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the set cover problem and the problem of exact cover by 3-sets in the Adleman-Lipton model.
    Chang WL; Guo M
    Biosystems; 2003 Dec; 72(3):263-75. PubMed ID: 14643494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is optimal solution of every NP-complete or NP-hard problem determined from its characteristic for DNA-based computing.
    Guo M; Chang WL; Ho M; Lu J; Cao J
    Biosystems; 2005 Apr; 80(1):71-82. PubMed ID: 15740836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of DNA dumbbells. III. Theoretical analysis of optical melting curves of dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14).
    Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1992 Jul; 32(7):881-92. PubMed ID: 1391636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical predictions of DNA hairpin loop conformations: correlations with thermodynamic and spectroscopic data.
    Erie DA; Suri AK; Breslauer KJ; Jones RA; Olson WK
    Biochemistry; 1993 Jan; 32(2):436-54. PubMed ID: 8422353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of melting transitions of the DNA hairpins formed from the oligomer sequences d[GGATAC(X)4GTATCC] (X = A, T, G, C).
    Paner TM; Amaratunga M; Doktycz MJ; Benight AS
    Biopolymers; 1990 Dec; 29(14):1715-34. PubMed ID: 2207283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.
    Wang Z; Huang D; Meng H; Tang C
    Biosystems; 2013 Oct; 114(1):1-7. PubMed ID: 23871964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular solutions to the binary integer programming problem based on DNA computation.
    Yeh CW; Chu CP; Wu KR
    Biosystems; 2006 Jan; 83(1):56-66. PubMed ID: 16229936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic stability of the 5' dangling-ended DNA hairpins formed from sequences 5'-(XY)2GGATAC(T)4GTATCC-3', where X, Y = A, T, G, C.
    Doktycz MJ; Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1990; 30(7-8):829-45. PubMed ID: 2275982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational analysis of DNA-trinucleotide-hairpin-loop structures using a continuum solvent model.
    Zacharias M
    Biophys J; 2001 May; 80(5):2350-63. PubMed ID: 11325735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parallel algorithm for solving the n-queens problem based on inspired computational model.
    Wang Z; Huang D; Tan J; Liu T; Zhao K; Li L
    Biosystems; 2015 May; 131():22-9. PubMed ID: 25817410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.
    Wang Z; Ji Z; Wang X; Wu T; Huang W
    Biosystems; 2017 Dec; 162():59-65. PubMed ID: 28890344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving the Family Traveling Salesperson Problem in the Adleman-Lipton Model Based on DNA Computing.
    Wu X; Wang Z; Wu T; Bao X
    IEEE Trans Nanobioscience; 2022 Jan; 21(1):75-85. PubMed ID: 34460379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation of DNA hairpins containing the EcoRI recognition site by hairpin loops of varying size and composition: physical (NMR and UV) and enzymatic (EcoRI) studies.
    Germann MW; Kalisch BW; Lundberg P; Vogel HJ; van de Sande JH
    Nucleic Acids Res; 1990 Mar; 18(6):1489-98. PubMed ID: 2326190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting studies of dangling-ended DNA hairpins: effects of end length, loop sequence and biotinylation of loop bases.
    Riccelli PV; Mandell KE; Benight AS
    Nucleic Acids Res; 2002 Sep; 30(18):4088-93. PubMed ID: 12235393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Head-to-head bis-hairpin polyamide minor groove binders and their conjugates with triplex-forming oligonucleotides: studies of interaction with target double-stranded DNA.
    Halby L; Ryabinin VA; Sinyakov AN; Novopashina DS; Venyaminova AG; Grokhovsky SL; Surovaya AN; Gursky GV; Boutorine AS
    J Biomol Struct Dyn; 2007 Aug; 25(1):61-76. PubMed ID: 17676939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving the 3-SAT problem based on DNA computing.
    Liu W; Gao L; Liu X; Wang S; Xu J
    J Chem Inf Comput Sci; 2003; 43(6):1872-5. PubMed ID: 14632435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA hairpin loops in solution. Correlation between primary structure, thermostability and reactivity with single-strand-specific nuclease from mung bean.
    Xodo LE; Manzini G; Quadrifoglio F; van der Marel G; van Boom J
    Nucleic Acids Res; 1991 Apr; 19(7):1505-11. PubMed ID: 2027758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.