These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 14643616)

  • 1. Effect of fabrication pressure on the fatigue performance of Cemex XL acrylic bone cement.
    Lewis G; Janna SI
    Biomaterials; 2004; 25(7-8):1415-20. PubMed ID: 14643616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the viscosity classification of an acrylic bone cement on its in vitro fatigue performance.
    Lewis G; Janna S
    Biomed Mater Eng; 2004; 14(1):33-42. PubMed ID: 14757951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of test specimen cross-sectional shape on the in vitro fatigue life of acrylic bone cement.
    Lewis G; Janna S
    Biomaterials; 2003 Oct; 24(23):4315-21. PubMed ID: 12853262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive fatigue properties of a commercially available acrylic bone cement for vertebroplasty.
    Ajaxon I; Persson C
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1199-207. PubMed ID: 24659042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of test specimen fabrication method and cross-section configuration on tension-tension fatigue life of PMMA bone cement.
    Sheafi EM; Tanner KE
    J Mech Behav Biomed Mater; 2015 Nov; 51():380-7. PubMed ID: 26295451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the minimum number of test specimens for fatigue testing of acrylic bone cement.
    Lewis G; Sadhasivini A
    Biomaterials; 2004 Aug; 25(18):4425-32. PubMed ID: 15046933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture properties of an acrylic bone cement.
    Bialoblocka-Juszczyk E; Baleani M; Cristofolini L; Viceconti M
    Acta Bioeng Biomech; 2008; 10(1):21-6. PubMed ID: 18634350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the radiopacifier in an acrylic bone cement on its mechanical, thermal, and physical properties: barium sulfate-containing cement versus iodine-containing cement.
    Lewis G; van Hooy-Corstjens CS; Bhattaram A; Koole LH
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):77-87. PubMed ID: 15786447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.
    Lewis G; Janna S; Bhattaram A
    Biomaterials; 2005 Jul; 26(20):4317-25. PubMed ID: 15683656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative influence of composition and viscosity of acrylic bone cement on its apparent fracture toughness.
    Lewis G
    Biomed Mater Eng; 2000; 10(1):1-11. PubMed ID: 10950202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strength of acrylic bone cement cured under thumb pressure.
    Klein RW; Scott CP; Higham PA
    Biomaterials; 2004 Feb; 25(5):943-7. PubMed ID: 14609683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: gentamicin sulfate in SmartSet HV.
    Lewis G; Janna S
    Acta Orthop; 2006 Aug; 77(4):622-7. PubMed ID: 16929440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of test frequency on the in vitro fatigue life of acrylic bone cement.
    Lewis G; Janna S; Carroll M
    Biomaterials; 2003 Mar; 24(6):1111-7. PubMed ID: 12504534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep properties of three low temperature-curing bone cements: a preclinical assessment.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 2000 Sep; 53(5):498-504. PubMed ID: 10984697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a pre-blended antibiotic (gentamicin sulfate powder) on various mechanical, thermal, and physical properties of three acrylic bone cements.
    Lewis G; Bhattaram A
    J Biomater Appl; 2006 Apr; 20(4):377-408. PubMed ID: 16443619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue and fracture toughness of acrylic bone cements modified with long-chain amine activators.
    Deb S; Lewis G; Janna SW; Vazquez B; San Roman J
    J Biomed Mater Res A; 2003 Nov; 67(2):571-7. PubMed ID: 14566799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new, reliable, and simple-to-use method for the analysis of a population of values of a random variable using the Weibull probability distribution: application to acrylic bone cement fatigue results.
    Janna S; Dwiggins DP; Lewis G
    Biomed Mater Eng; 2005; 15(5):349-55. PubMed ID: 16179755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.