BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 14643669)

  • 1. Computational design and characterization of a monomeric helical dinuclear metalloprotein.
    Calhoun JR; Kono H; Lahr S; Wang W; DeGrado WF; Saven JG
    J Mol Biol; 2003 Dec; 334(5):1101-15. PubMed ID: 14643669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions.
    Torres Martin de Rosales R; Faiella M; Farquhar E; Que L; Andreozzi C; Pavone V; Maglio O; Nastri F; Lombardi A
    J Biol Inorg Chem; 2010 Jun; 15(5):717-28. PubMed ID: 20225070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial di-iron proteins: solution characterization of four helix bundles containing two distinct types of inter-helical loops.
    Maglio O; Nastri F; Calhoun JR; Lahr S; Wade H; Pavone V; DeGrado WF; Lombardi A
    J Biol Inorg Chem; 2005 Aug; 10(5):539-49. PubMed ID: 16091937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational de novo design, and characterization of an A(2)B(2) diiron protein.
    Summa CM; Rosenblatt MM; Hong JK; Lear JD; DeGrado WF
    J Mol Biol; 2002 Aug; 321(5):923-38. PubMed ID: 12206771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.
    Plegaria JS; Dzul SP; Zuiderweg ER; Stemmler TL; Pecoraro VL
    Biochemistry; 2015 May; 54(18):2858-73. PubMed ID: 25790102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and design of turns in alpha-helical hairpins.
    Lahr SJ; Engel DE; Stayrook SE; Maglio O; North B; Geremia S; Lombardi A; DeGrado WF
    J Mol Biol; 2005 Mar; 346(5):1441-54. PubMed ID: 15713492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and metal binding properties of a de novo metalloprotein binding a tetrazinc cluster.
    Chino M; Zhang SQ; Pirro F; Leone L; Maglio O; Lombardi A; DeGrado WF
    Biopolymers; 2018 Aug; 109(10):e23339. PubMed ID: 30203532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design of a single-chain diphenylporphyrin metalloprotein.
    Bender GM; Lehmann A; Zou H; Cheng H; Fry HC; Engel D; Therien MJ; Blasie JK; Roder H; Saven JG; DeGrado WF
    J Am Chem Soc; 2007 Sep; 129(35):10732-40. PubMed ID: 17691729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution NMR structure of a designed metalloprotein and complementary molecular dynamics refinement.
    Calhoun JR; Liu W; Spiegel K; Dal Peraro M; Klein ML; Valentine KG; Wand AJ; DeGrado WF
    Structure; 2008 Feb; 16(2):210-5. PubMed ID: 18275812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries.
    Li X; Suzuki K; Kanaori K; Tajima K; Kashiwada A; Hiroaki H; Kohda D; Tanaka T
    Protein Sci; 2000 Jul; 9(7):1327-33. PubMed ID: 10933497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of a designed metalloprotein to changes in metal ion coordination, exogenous ligands, and active site volume determined by X-ray crystallography.
    Geremia S; Di Costanzo L; Randaccio L; Engel DE; Lombardi A; Nastri F; DeGrado WF
    J Am Chem Soc; 2005 Dec; 127(49):17266-76. PubMed ID: 16332076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Of folding and function: understanding active-site context through metalloenzyme design.
    Harris KL; Lim S; Franklin SJ
    Inorg Chem; 2006 Dec; 45(25):10002-12. PubMed ID: 17140195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1.
    Arnesano F; Banci L; Bertini I; Huffman DL; O'Halloran TV
    Biochemistry; 2001 Feb; 40(6):1528-39. PubMed ID: 11327811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Covalently Linked Heterodimeric Four-Helix Bundles.
    Chino M; Leone L; Maglio O; Lombardi A
    Methods Enzymol; 2016; 580():471-99. PubMed ID: 27586346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle.
    Plegaria JS; Pecoraro VL
    Methods Mol Biol; 2016; 1414():187-96. PubMed ID: 27094292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.