These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 14643933)
1. Interaction of a synthetic peptide corresponding to the N-terminus of canine distemper virus fusion protein with phospholipid vesicles: a biophysical study. Aranda FJ; Teruel JA; Ortiz A Biochim Biophys Acta; 2003 Dec; 1618(1):51-8. PubMed ID: 14643933 [TBL] [Abstract][Full Text] [Related]
2. Membrane destabilization by N-terminal peptides of viral envelope proteins. Düzgüneş N; Shavnin SA J Membr Biol; 1992 May; 128(1):71-80. PubMed ID: 1323686 [TBL] [Abstract][Full Text] [Related]
3. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
4. Participation of two fusion peptides in measles virus-induced membrane fusion: emerging similarity with other paramyxoviruses. Samuel O; Shai Y Biochemistry; 2001 Feb; 40(5):1340-9. PubMed ID: 11170461 [TBL] [Abstract][Full Text] [Related]
5. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
6. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
7. Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site. Rodríguez-Crespo I; Núñez E; Yélamos B; Gómez-Gutiérrez J; Albar JP; Peterson DL; Gavilanes F Virology; 1999 Aug; 261(1):133-42. PubMed ID: 10441561 [TBL] [Abstract][Full Text] [Related]
8. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(3):760-8. PubMed ID: 11170393 [TBL] [Abstract][Full Text] [Related]
9. A bacterial monorhamnolipid alters the biophysical properties of phosphatidylethanolamine model membranes. Abbasi H; Aranda FJ; Noghabi KA; Ortiz A Biochim Biophys Acta; 2013 Sep; 1828(9):2083-90. PubMed ID: 23643890 [TBL] [Abstract][Full Text] [Related]
10. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797 [TBL] [Abstract][Full Text] [Related]
11. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
12. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
13. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C14-peptides. Pedersen TB; Kaasgaard T; Jensen MØ; Frokjaer S; Mouritsen OG; Jørgensen K Biophys J; 2005 Oct; 89(4):2494-503. PubMed ID: 16100273 [TBL] [Abstract][Full Text] [Related]
14. Study of the secondary structure of the C-terminal domain of the antiapoptotic protein bcl-2 and its interaction with model membranes. del Mar Martínez-Senac M; Corbalán-García S; Gómez-Fernández JC Biochemistry; 2000 Jul; 39(26):7744-52. PubMed ID: 10869179 [TBL] [Abstract][Full Text] [Related]
15. Sterol-phospholipid interactions in model membranes. Effect of polar group substitutions in the cholesterol side-chain at C20 and C22. Gallay J; de Kruijff B; Demel RA Biochim Biophys Acta; 1984 Jan; 769(1):96-104. PubMed ID: 6691981 [TBL] [Abstract][Full Text] [Related]
16. Phospholipid structure determines the effects of peptides on membranes. Differential scanning calorimetry studies with pentagastrin-related peptides. Surewicz WK; Epand RM Biochim Biophys Acta; 1986 Apr; 856(2):290-300. PubMed ID: 3955044 [TBL] [Abstract][Full Text] [Related]
17. The chemical toxic benzo[a]pyrene perturbs the physical organization of phosphatidylcholine membranes. Jiménez M; Aranda FJ; Teruel JA; Ortiz A Environ Toxicol Chem; 2002 Apr; 21(4):787-93. PubMed ID: 11951953 [TBL] [Abstract][Full Text] [Related]
18. Membrane fusion between liposomes composed of acidic phospholipids and neutral phospholipids induced by melittin: a differential scanning calorimetric study. Higashino Y; Matsui A; Ohki K J Biochem; 2001 Sep; 130(3):393-7. PubMed ID: 11530015 [TBL] [Abstract][Full Text] [Related]
19. Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models. Agopian A; Castano S Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):117-26. PubMed ID: 24055820 [TBL] [Abstract][Full Text] [Related]
20. Effect of acylation on the interaction of the N-Terminal segment of pulmonary surfactant protein SP-C with phospholipid membranes. Plasencia I; Baumgart F; Andreu D; Marsh D; Pérez-Gil J Biochim Biophys Acta; 2008 May; 1778(5):1274-82. PubMed ID: 18339301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]