These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 14643935)

  • 41. Fluorescence studies of the interactions of ubiquinol-10 with liposomes.
    Fiorini R; Ragni L; Ambrosi S; Littarru GP; Gratton E; Hazlett T
    Photochem Photobiol; 2008; 84(1):209-14. PubMed ID: 18173722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane.
    Zhang YL; Frangos JA; Chachisvilis M
    Biochem Biophys Res Commun; 2006 Sep; 347(3):838-41. PubMed ID: 16857174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of Al(3+) and related metals on membrane phase state and hydration: correlation with lipid oxidation.
    Verstraeten SV; Oteiza PI
    Arch Biochem Biophys; 2000 Mar; 375(2):340-6. PubMed ID: 10700390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct observation of lipid domains in free standing bilayers: from simple to complex lipid mixtures.
    Bagatolli LA
    Chem Phys Lipids; 2003 Jan; 122(1-2):137-45. PubMed ID: 12598044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectral-luminescent properties of laurdan molecule.
    Titova TY; Artyukhov VY; Zharkova OM; Morozova JP
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():64-9. PubMed ID: 24463241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction.
    Viard M; Gallay J; Vincent M; Meyer O; Robert B; Paternostre M
    Biophys J; 1997 Oct; 73(4):2221-34. PubMed ID: 9336218
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Orientation of Laurdan in Phospholipid Bilayers Influences Its Fluorescence: Quantum Mechanics and Classical Molecular Dynamics Study.
    Wasif Baig M; Pederzoli M; Jurkiewicz P; Cwiklik L; Pittner J
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30011800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quercetin and epigallocatechin-3-gallate effect on the anisotropy of model membranes with cholesterol.
    Ionescu D; Margină D; Ilie M; Iftime A; Ganea C
    Food Chem Toxicol; 2013 Nov; 61():94-100. PubMed ID: 23523830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipid phases in renal brush border membranes revealed by Laurdan fluorescence.
    Levi M; Wilson PV; Cooper OJ; Gratton E
    Photochem Photobiol; 1993 Mar; 57(3):420-5. PubMed ID: 8475174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of spectral heterogeneity of prodan and laurdan solutions on the transfer of electronic energy to octadecyl rhodamine B.
    Kozyra KA; Heldt JR; Heldt J
    Biophys Chem; 2006 Apr; 121(1):57-64. PubMed ID: 16443320
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New insights on the fluorescent emission spectra of Prodan and Laurdan.
    Vequi-Suplicy CC; Coutinho K; Lamy MT
    J Fluoresc; 2015 May; 25(3):621-9. PubMed ID: 25753230
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiphoton excitation fluorescence microscopy in planar membrane systems.
    Brewer J; Bernardino de la Serna J; Wagner K; Bagatolli LA
    Biochim Biophys Acta; 2010 Jul; 1798(7):1301-8. PubMed ID: 20226161
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coexistence of domains with distinct order and polarity in fluid bacterial membranes.
    Vanounou S; Pines D; Pines E; Parola AH; Fishov I
    Photochem Photobiol; 2002 Jul; 76(1):1-11. PubMed ID: 12126299
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels.
    Ma Y; Benda A; Kwiatek J; Owen DM; Gaus K
    Biophys J; 2018 Oct; 115(8):1498-1508. PubMed ID: 30269886
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing.
    Dinic J; Biverståhl H; Mäler L; Parmryd I
    Biochim Biophys Acta; 2011 Jan; 1808(1):298-306. PubMed ID: 20937246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point.
    Vaughn AR; Bell TA; Gibbons E; Askew C; Franchino H; Hirsche K; Kemsley L; Melchor S; Moulton E; Schwab M; Nelson J; Bell JD
    Biochim Biophys Acta; 2015 Apr; 1848(4):942-50. PubMed ID: 25559316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation and dynamics of phase properties in phospholipid mixtures detected by Laurdan fluorescence.
    Parasassi T; Ravagnan G; Rusch RM; Gratton E
    Photochem Photobiol; 1993 Mar; 57(3):403-10. PubMed ID: 8475171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types.
    Parasassi T; Loiero M; Raimondi M; Ravagnan G; Gratton E
    Biochim Biophys Acta; 1993 Dec; 1153(2):143-54. PubMed ID: 8274484
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measuring molecular order for lipid membrane phase studies: Linear relationship between Laurdan generalized polarization and deuterium NMR order parameter.
    Leung SSW; Brewer J; Bagatolli LA; Thewalt JL
    Biochim Biophys Acta Biomembr; 2019 Dec; 1861(12):183053. PubMed ID: 31472104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.