These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 14644025)
1. CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. Carboni S; Aboul-Enein F; Waltzinger C; Killeen N; Lassmann H; Peña-Rossi C J Neuroimmunol; 2003 Dec; 145(1-2):1-11. PubMed ID: 14644025 [TBL] [Abstract][Full Text] [Related]
2. Role of MOG-stimulated Th1 type "light up" (GFP+) CD4+ T cells for the development of experimental autoimmune encephalomyelitis (EAE). Yura M; Takahashi I; Serada M; Koshio T; Nakagami K; Yuki Y; Kiyono H J Autoimmun; 2001 Aug; 17(1):17-25. PubMed ID: 11488634 [TBL] [Abstract][Full Text] [Related]
3. Resistance to myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis by death receptor 6-deficient mice. Schmidt CS; Zhao J; Chain J; Hepburn D; Gitter B; Sandusky G; Chintalacharuvu S; Glasebrook A; Na S J Immunol; 2005 Aug; 175(4):2286-92. PubMed ID: 16081797 [TBL] [Abstract][Full Text] [Related]
4. IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. Klein RS; Izikson L; Means T; Gibson HD; Lin E; Sobel RA; Weiner HL; Luster AD J Immunol; 2004 Jan; 172(1):550-9. PubMed ID: 14688366 [TBL] [Abstract][Full Text] [Related]
5. Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. Nohara C; Akiba H; Nakajima A; Inoue A; Koh CS; Ohshima H; Yagita H; Mizuno Y; Okumura K J Immunol; 2001 Feb; 166(3):2108-15. PubMed ID: 11160262 [TBL] [Abstract][Full Text] [Related]
6. Host T cells are the main producers of IL-17 within the central nervous system during initiation of experimental autoimmune encephalomyelitis induced by adoptive transfer of Th1 cell lines. Lees JR; Iwakura Y; Russell JH J Immunol; 2008 Jun; 180(12):8066-72. PubMed ID: 18523270 [TBL] [Abstract][Full Text] [Related]
7. CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis. Teige A; Teige I; Lavasani S; Bockermann R; Mondoc E; Holmdahl R; Issazadeh-Navikas S J Immunol; 2004 Jan; 172(1):186-94. PubMed ID: 14688325 [TBL] [Abstract][Full Text] [Related]
8. Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. Furlan R; Brambilla E; Ruffini F; Poliani PL; Bergami A; Marconi PC; Franciotta DM; Penna G; Comi G; Adorini L; Martino G J Immunol; 2001 Aug; 167(3):1821-9. PubMed ID: 11466408 [TBL] [Abstract][Full Text] [Related]
9. Increased severity of experimental allergic encephalomyelitis in lyn-/- mice in the absence of elevated proinflammatory cytokine response in the central nervous system. Du C; Sriram S J Immunol; 2002 Mar; 168(6):3105-12. PubMed ID: 11884485 [TBL] [Abstract][Full Text] [Related]
10. Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Sonobe Y; Jin S; Wang J; Kawanokuchi J; Takeuchi H; Mizuno T; Suzumura A Tohoku J Exp Med; 2007 Dec; 213(4):329-39. PubMed ID: 18075237 [TBL] [Abstract][Full Text] [Related]
11. LFA-1 Controls Th1 and Th17 Motility Behavior in the Inflamed Central Nervous System. Dusi S; Angiari S; Pietronigro EC; Lopez N; Angelini G; Zenaro E; Della Bianca V; Tosadori G; Paris F; Amoruso A; Carlucci T; Constantin G; Rossi B Front Immunol; 2019; 10():2436. PubMed ID: 31681316 [TBL] [Abstract][Full Text] [Related]
12. Inconsistence between number and function of autoreactive T cells in the course of experimental autoimmune encephalomyelitis. Wan X; Pei W; Zhang Y; Zhang L; Shahzad KA; Xu T; Shen C Immunol Invest; 2018 Jan; 47(1):1-17. PubMed ID: 28872930 [TBL] [Abstract][Full Text] [Related]
13. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. Tran EH; Prince EN; Owens T J Immunol; 2000 Mar; 164(5):2759-68. PubMed ID: 10679118 [TBL] [Abstract][Full Text] [Related]
15. Role of IL-12 receptor beta 1 in regulation of T cell response by APC in experimental autoimmune encephalomyelitis. Zhang GX; Yu S; Gran B; Li J; Siglienti I; Chen X; Calida D; Ventura E; Kamoun M; Rostami A J Immunol; 2003 Nov; 171(9):4485-92. PubMed ID: 14568921 [TBL] [Abstract][Full Text] [Related]
16. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. Rostami A; Ciric B J Neurol Sci; 2013 Oct; 333(1-2):76-87. PubMed ID: 23578791 [TBL] [Abstract][Full Text] [Related]
17. Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. Juedes AE; Ruddle NH J Immunol; 2001 Apr; 166(8):5168-75. PubMed ID: 11290800 [TBL] [Abstract][Full Text] [Related]
18. Age-associated changes in rat immune system: lessons learned from experimental autoimmune encephalomyelitis. Djikić J; Nacka-Aleksić M; Pilipović I; Stojić-Vukanić Z; Bufan B; Kosec D; Dimitrijević M; Leposavić G Exp Gerontol; 2014 Oct; 58():179-97. PubMed ID: 25128713 [TBL] [Abstract][Full Text] [Related]
19. Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. Furtado GC; Marcondes MC; Latkowski JA; Tsai J; Wensky A; Lafaille JJ J Immunol; 2008 Oct; 181(7):4648-55. PubMed ID: 18802067 [TBL] [Abstract][Full Text] [Related]
20. Tellurium compound AS101 ameliorates experimental autoimmune encephalomyelitis by VLA-4 inhibition and suppression of monocyte and T cell infiltration into the CNS. Lee JH; Halperin-Sheinfeld M; Baatar D; Mughal MR; Tae HJ; Kim JW; Carter A; Lustig A; Snir O; Lavie G; Okun E; Mattson MP; Sredni B; Taub DD Neuromolecular Med; 2014 Jun; 16(2):292-307. PubMed ID: 24272426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]