BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 14644165)

  • 1. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly.
    Berendse M; Grounds MD; Lloyd CM
    Exp Cell Res; 2003 Dec; 291(2):435-50. PubMed ID: 14644165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel role for non-muscle gamma-actin in skeletal muscle sarcomere assembly.
    Lloyd CM; Berendse M; Lloyd DG; Schevzov G; Grounds MD
    Exp Cell Res; 2004 Jul; 297(1):82-96. PubMed ID: 15194427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion.
    Nowak SJ; Nahirney PC; Hadjantonakis AK; Baylies MK
    J Cell Sci; 2009 Sep; 122(Pt 18):3282-93. PubMed ID: 19706686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta1 integrins regulate myoblast fusion and sarcomere assembly.
    Schwander M; Leu M; Stumm M; Dorchies OM; Ruegg UT; Schittny J; Müller U
    Dev Cell; 2003 May; 4(5):673-85. PubMed ID: 12737803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient production of alpha-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation.
    Springer ML; Ozawa CR; Blau HM
    Cell Motil Cytoskeleton; 2002 Apr; 51(4):177-86. PubMed ID: 11977092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes.
    Fujita H; Nedachi T; Kanzaki M
    Exp Cell Res; 2007 May; 313(9):1853-65. PubMed ID: 17425954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth.
    Horsley V; Jansen KM; Mills ST; Pavlath GK
    Cell; 2003 May; 113(4):483-94. PubMed ID: 12757709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creatine kinase B is necessary to limit myoblast fusion during myogenesis.
    Simionescu-Bankston A; Pichavant C; Canner JP; Apponi LH; Wang Y; Steeds C; Olthoff JT; Belanto JJ; Ervasti JM; Pavlath GK
    Am J Physiol Cell Physiol; 2015 Jun; 308(11):C919-31. PubMed ID: 25810257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism.
    Shenoy PS; Sen U; Kapoor S; Ranade AV; Chowdhury CR; Bose B
    Environ Pollut; 2019 Jan; 244():534-548. PubMed ID: 30384060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.
    Goh Q; Dearth CL; Corbett JT; Pierre P; Chadee DN; Pizza FX
    Exp Cell Res; 2015 Feb; 331(2):292-308. PubMed ID: 25281303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered secondary myogenesis in transgenic animals expressing the neural cell adhesion molecule under the control of a skeletal muscle alpha-actin promoter.
    Fazeli S; Wells DJ; Hobbs C; Walsh FS
    J Cell Biol; 1996 Oct; 135(1):241-51. PubMed ID: 8858177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching of actin isoforms in skeletal muscle differentiation using mouse ES cells.
    Mizuno Y; Suzuki M; Nakagawa H; Ninagawa N; Torihashi S
    Histochem Cell Biol; 2009 Dec; 132(6):669-72. PubMed ID: 19830444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of topological constraints on the alignment and maturation of multinucleated myotubes.
    Song KY; Correia JC; Ruas JL; Teixeira AI
    Biotechnol Bioeng; 2021 Jun; 118(6):2234-2242. PubMed ID: 33629347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance.
    Vajanthri KY; Sidu RK; Poddar S; Singh AK; Mahto SK
    Cytoskeleton (Hoboken); 2019 Mar; 76(3):269-285. PubMed ID: 31074945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol depletion by methyl-beta-cyclodextrin enhances myoblast fusion and induces the formation of myotubes with disorganized nuclei.
    Mermelstein CS; Portilho DM; Medeiros RB; Matos AR; Einicker-Lamas M; Tortelote GG; Vieyra A; Costa ML
    Cell Tissue Res; 2005 Feb; 319(2):289-97. PubMed ID: 15549398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stac3 inhibits myoblast differentiation into myotubes.
    Ge X; Zhang Y; Park S; Cong X; Gerrard DE; Jiang H
    PLoS One; 2014; 9(4):e95926. PubMed ID: 24788338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.
    Langlois S; Cowan KN
    Adv Exp Med Biol; 2017; 925():57-73. PubMed ID: 27518505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes.
    Fenix AM; Neininger AC; Taneja N; Hyde K; Visetsouk MR; Garde RJ; Liu B; Nixon BR; Manalo AE; Becker JR; Crawley SW; Bader DM; Tyska MJ; Liu Q; Gutzman JH; Burnette DT
    Elife; 2018 Dec; 7():. PubMed ID: 30540249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle-specific overexpression of the type 1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3K, and not calcineurin, signaling.
    Quinn LS; Anderson BG; Plymate SR
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1538-51. PubMed ID: 17940216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.