These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14644177)

  • 1. Evolutionary markers in the (beta/alpha)8-barrel fold.
    Vega MC; Lorentzen E; Linden A; Wilmanns M
    Curr Opin Chem Biol; 2003 Dec; 7(6):694-701. PubMed ID: 14644177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of parallel beta/alpha-barrel enzyme family lightened by structural data on starch-processing enzymes.
    Janecek S; Baláz S
    J Protein Chem; 1993 Oct; 12(5):509-14. PubMed ID: 8141995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence similarities in (alpha/beta)8-barrel enzymes revealed by conserved regions of alpha-amylase.
    Janecek S
    FEBS Lett; 1993 Jan; 316(1):23-6. PubMed ID: 8422935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally essential, invariant glutamate near the C-terminus of strand beta 5 in various (alpha/beta)8-barrel enzymes as a possible indicator of their evolutionary relatedness.
    Janecek S; Baláz S
    Protein Eng; 1995 Aug; 8(8):809-13. PubMed ID: 8637850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative model of EutB from coenzyme B12-dependent ethanolamine ammonia-lyase reveals a beta8alpha8, TIM-barrel fold and radical catalytic site structural features.
    Sun L; Warncke K
    Proteins; 2006 Aug; 64(2):308-19. PubMed ID: 16688781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PFIT and PFRIT: bioinformatic algorithms for detecting glycosidase function from structure and sequence.
    Kleiger G; Panina EM; Mallick P; Eisenberg D
    Protein Sci; 2004 Jan; 13(1):221-9. PubMed ID: 14691237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions.
    Nagano N; Orengo CA; Thornton JM
    J Mol Biol; 2002 Aug; 321(5):741-65. PubMed ID: 12206759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins.
    Anantharaman V; Aravind L; Koonin EV
    Curr Opin Chem Biol; 2003 Feb; 7(1):12-20. PubMed ID: 12547421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability, catalytic versatility and evolution of the (beta alpha)(8)-barrel fold.
    Höcker B; Jürgens C; Wilmanns M; Sterner R
    Curr Opin Biotechnol; 2001 Aug; 12(4):376-81. PubMed ID: 11551466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase.
    Eads JC; Ozturk D; Wexler TB; Grubmeyer C; Sacchettini JC
    Structure; 1997 Jan; 5(1):47-58. PubMed ID: 9016724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the sequence template method for protein structure prediction. Discrimination of the (beta/alpha)8-barrel fold.
    Pickett SD; Saqi MA; Sternberg MJ
    J Mol Biol; 1992 Nov; 228(1):170-87. PubMed ID: 1447780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology?
    Janecek S
    Protein Sci; 1996 Jun; 5(6):1136-43. PubMed ID: 8762144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emergence of catalytic and structural diversity within the beta-clip fold.
    Iyer LM; Aravind L
    Proteins; 2004 Jun; 55(4):977-91. PubMed ID: 15146494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly diverse protein library based on the ubiquitous (β/α)₈ enzyme fold yields well-structured proteins through in vitro folding selection.
    Golynskiy MV; Haugner JC; Seelig B
    Chembiochem; 2013 Sep; 14(13):1553-63. PubMed ID: 23956201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary potential of (beta/alpha)8-barrels: functional promiscuity produced by single substitutions in the enolase superfamily.
    Schmidt DM; Mundorff EC; Dojka M; Bermudez E; Ness JE; Govindarajan S; Babbitt PC; Minshull J; Gerlt JA
    Biochemistry; 2003 Jul; 42(28):8387-93. PubMed ID: 12859183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clusters in alpha/beta barrel proteins: implications for protein structure, function, and folding: a graph theoretical approach.
    Kannan N; Selvaraj S; Gromiha MM; Vishveshwara S
    Proteins; 2001 May; 43(2):103-12. PubMed ID: 11276080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence and structural features of the T-fold, an original tunnelling building unit.
    Colloc'h N; Poupon A; Mornon JP
    Proteins; 2000 May; 39(2):142-54. PubMed ID: 10737935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse engineering the (beta/alpha )8 barrel fold.
    Silverman JA; Balakrishnan R; Harbury PB
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3092-7. PubMed ID: 11248037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
    Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.