BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14644184)

  • 1. Hydrophilic to amphiphilic design in redox protein maquettes.
    Discher BM; Koder RL; Moser CC; Dutton PL
    Curr Opin Chem Biol; 2003 Dec; 7(6):741-8. PubMed ID: 14644184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Construction of Redox Active Proteins.
    Moser CC; Sheehan MM; Ennist NM; Kodali G; Bialas C; Englander MT; Discher BM; Dutton PL
    Methods Enzymol; 2016; 580():365-88. PubMed ID: 27586341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange.
    Huang SS; Koder RL; Lewis M; Wand AJ; Dutton PL
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5536-41. PubMed ID: 15056758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes.
    Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL
    Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of amphiphilic protein maquettes: controlling assembly, membrane insertion, and cofactor interactions.
    Discher BM; Noy D; Strzalka J; Ye S; Moser CC; Lear JD; Blasie JK; Dutton PL
    Biochemistry; 2005 Sep; 44(37):12329-43. PubMed ID: 16156646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and engineering of a man-made diffusive electron-transport protein.
    Fry BA; Solomon LA; Leslie Dutton P; Moser CC
    Biochim Biophys Acta; 2016 May; 1857(5):513-521. PubMed ID: 26423266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First principles design of a core bioenergetic transmembrane electron-transfer protein.
    Goparaju G; Fry BA; Chobot SE; Wiedman G; Moser CC; Leslie Dutton P; Discher BM
    Biochim Biophys Acta; 2016 May; 1857(5):503-512. PubMed ID: 26672896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes.
    Reddi AR; Reedy CJ; Mui S; Gibney BR
    Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering oxidoreductases: maquette proteins designed from scratch.
    Lichtenstein BR; Farid TA; Kodali G; Solomon LA; Anderson JL; Sheehan MM; Ennist NM; Fry BA; Chobot SE; Bialas C; Mancini JA; Armstrong CT; Zhao Z; Esipova TV; Snell D; Vinogradov SA; Discher BM; Moser CC; Dutton PL
    Biochem Soc Trans; 2012 Jun; 40(3):561-6. PubMed ID: 22616867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intelligent design: the de novo engineering of proteins with specified functions.
    Koder RL; Dutton PL
    Dalton Trans; 2006 Jul; (25):3045-51. PubMed ID: 16786062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane electric potential difference in the protein-pigment complex of photosystem 2.
    Mamedov MD; Kurashov VN; Petrova IO; Semenov AY
    Biochemistry (Mosc); 2012 Sep; 77(9):947-55. PubMed ID: 23157254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine Y(Z) in Mn-depleted core complexes of photosystem II.
    Diner BA; Force DA; Randall DW; Britt RD
    Biochemistry; 1998 Dec; 37(51):17931-43. PubMed ID: 9922161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction dynamics and proton coupled electron transfer: studies of tyrosine-based charge transfer in natural and biomimetic systems.
    Barry BA
    Biochim Biophys Acta; 2015 Jan; 1847(1):46-54. PubMed ID: 25260243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD.
    Katzen F; Beckwith J
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10471-6. PubMed ID: 12925743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The possible role of redox-associated protons in growth of plant cells.
    Barr R
    J Bioenerg Biomembr; 1991 Jun; 23(3):443-67. PubMed ID: 1650780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Redox-Active Peptides: Towards Functional Materials.
    Sommer DJ; Alcala-Torano R; Dizicheh ZB; Ghirlanda G
    Adv Exp Med Biol; 2016; 940():215-243. PubMed ID: 27677515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wolinella succinogenes quinol:fumarate reductase-2.2-A resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer.
    Lancaster CR
    Biochim Biophys Acta; 2002 Oct; 1565(2):215-31. PubMed ID: 12409197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for transmembrane proton transfer in a dihaem-containing membrane protein complex.
    Madej MG; Nasiri HR; Hilgendorff NS; Schwalbe H; Lancaster CR
    EMBO J; 2006 Oct; 25(20):4963-70. PubMed ID: 17024183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and engineering of water-soluble light-harvesting protein maquettes.
    Kodali G; Mancini JA; Solomon LA; Episova TV; Roach N; Hobbs CJ; Wagner P; Mass OA; Aravindu K; Barnsley JE; Gordon KC; Officer DL; Dutton PL; Moser CC
    Chem Sci; 2017 Jan; 8(1):316-324. PubMed ID: 28261441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.