These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 14644457)

  • 1. New variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons.
    Lewis ER; van Dijk P
    Hear Res; 2003 Dec; 186(1-2):30-46. PubMed ID: 14644457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New variation on the derivation of spectro-temporal receptive fields for primary auditory afferent axons.
    Lewis ER; van Dijk P
    Hear Res; 2004 Mar; 189(1-2):120-36. PubMed ID: 15032236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spectro-temporal receptive field. A functional characteristic of auditory neurons.
    Aertsen AM; Johannesma PI
    Biol Cybern; 1981; 42(2):133-43. PubMed ID: 7326288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
    Qiu A; Schreiner CE; EscabĂ­ MA
    J Neurophysiol; 2003 Jul; 90(1):456-76. PubMed ID: 12660353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning properties of turtle auditory nerve fibers: evidence for suppression and adaptation.
    Sneary MG; Lewis ER
    Hear Res; 2007 Jun; 228(1-2):22-30. PubMed ID: 17331685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli.
    Aertsen AM; Johannesma PI
    Biol Cybern; 1981; 42(2):145-56. PubMed ID: 6976799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid correlation method for the analysis of spectro-temporal receptive fields of auditory neurons.
    Richard JP; Leppelsack HJ; Hausberger M
    J Neurosci Methods; 1995; 61(1-2):99-103. PubMed ID: 8618431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning and timing of excitation and inhibition in primary auditory nerve fibers.
    Lewis ER; Henry KR; Yamada WM
    Hear Res; 2002 Sep; 171(1-2):13-31. PubMed ID: 12204346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L) investigated with noise stimuli.
    Hermes DJ; Aertsen AM; Johannesma PI; Eggermont JJ
    Hear Res; 1981 Nov; 5(2-3):147-78. PubMed ID: 6975772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Idealized computational models for auditory receptive fields.
    Lindeberg T; Friberg A
    PLoS One; 2015; 10(3):e0119032. PubMed ID: 25822973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating sparse spectro-temporal receptive fields with natural stimuli.
    David SV; Mesgarani N; Shamma SA
    Network; 2007 Sep; 18(3):191-212. PubMed ID: 17852750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the temporal responses of non-phase-locking bullfrog auditory units to complex acoustic waveforms.
    Yamada WM; Lewis ER
    Hear Res; 1999 Apr; 130(1-2):155-70. PubMed ID: 10320106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing contextual effects in spectro-temporal receptive fields.
    Westö J; May PJ
    Hear Res; 2016 Sep; 339():195-210. PubMed ID: 27473504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wiener and Volterra analyses applied to the auditory system.
    Eggermont JJ
    Hear Res; 1993 Apr; 66(2):177-201. PubMed ID: 8509309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2007 Sep; 148(3):806-14. PubMed ID: 17693032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena.
    Cortopassi KA; Lewis ER
    Brain Behav Evol; 1998; 51(6):331-48. PubMed ID: 9623909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-space receptive fields of semicircular canal afferent neurons in the bullfrog.
    Paulin MG; Hoffman LF
    Neurocomputing (Amst); 2001 Jun; 38-40(1-4):293-8. PubMed ID: 12194188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents.
    Rieke F; Bodnar DA; Bialek W
    Proc Biol Sci; 1995 Dec; 262(1365):259-65. PubMed ID: 8587884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning and timing in the gerbil ear: Wiener-kernel analysis.
    Lewis ER; Henry KR; Yamada WM
    Hear Res; 2002 Dec; 174(1-2):206-21. PubMed ID: 12433411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First order temporal properties of spontaneous and tone-evoked activity of auditory afferent neurones in the cochlear ganglion of the pigeon.
    Gummer AW
    Hear Res; 1991 Oct; 55(2):143-66. PubMed ID: 1757283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.