BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 14644459)

  • 21. Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence.
    Wang Y; Ding N; Ahmar N; Xiang J; Poeppel D; Simon JZ
    J Neurophysiol; 2012 Apr; 107(8):2033-41. PubMed ID: 21975451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Desynchronisation of auditory steady-state responses related to changes in interaural phase differences: an objective measure of binaural hearing.
    Vercammen C; van Wieringen A; Wouters J; Francart T
    Int J Audiol; 2017 Jul; 56(7):464-471. PubMed ID: 28635497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus.
    Roberts LE; Bosnyak DJ; Bruce IC; Gander PE; Paul BT
    Hear Res; 2015 Sep; 327():9-27. PubMed ID: 25937134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence.
    Luo H; Wang Y; Poeppel D; Simon JZ
    J Neurophysiol; 2006 Nov; 96(5):2712-23. PubMed ID: 16510774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pilot study: Auditory steady-state responses (ASSR) can be measured in human fetuses using fetal magnetoencephalography (fMEG).
    Niepel D; Krishna B; Siegel ER; Draganova R; Preissl H; Govindan RB; Eswaran H
    PLoS One; 2020; 15(7):e0235310. PubMed ID: 32697776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amplitude modulation rate dependent topographic organization of the auditory steady-state response in human auditory cortex.
    Weisz N; Lithari C
    Hear Res; 2017 Oct; 354():102-108. PubMed ID: 28917446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses.
    Pauli-Magnus D; Hoch G; Strenzke N; Anderson S; Jentsch TJ; Moser T
    Neuroscience; 2007 Nov; 149(3):673-84. PubMed ID: 17869440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tonotopic representation of missing fundamental complex sounds in the human auditory cortex.
    Fujioka T; Ross B; Okamoto H; Takeshima Y; Kakigi R; Pantev C
    Eur J Neurosci; 2003 Jul; 18(2):432-40. PubMed ID: 12887425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does the 40-Hz auditory steady-state response show the binaural masking level difference?
    Ishida IM; Stapells DR
    Ear Hear; 2009 Dec; 30(6):713-5. PubMed ID: 19701090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The modulatory influence of a predictive cue on the auditory steady-state response.
    Weisz N; Lecaignard F; Müller N; Bertrand O
    Hum Brain Mapp; 2012 Jun; 33(6):1417-30. PubMed ID: 21538704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attentional modulation of auditory steady-state responses.
    Mahajan Y; Davis C; Kim J
    PLoS One; 2014; 9(10):e110902. PubMed ID: 25334021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory steady-state responses during and after a stimulus: Cortical sources, and the influence of attention and musicality.
    Manting CL; Gulyas B; Ullén F; Lundqvist D
    Neuroimage; 2021 Jun; 233():117962. PubMed ID: 33744455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of auditory stimulation rates on evoked potentials during general anesthesia: relation between the transient auditory middle-latency response and the 40-Hz auditory steady state response.
    McNeer RR; Bohórquez J; Ozdamar O
    Anesthesiology; 2009 May; 110(5):1026-35. PubMed ID: 19352165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Latency of auditory evoked M100 as a function of tone frequency.
    Roberts TP; Poeppel D
    Neuroreport; 1996 Apr; 7(6):1138-40. PubMed ID: 8817518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans.
    Cohen LT; Rickards FW; Clark GM
    J Acoust Soc Am; 1991 Nov; 90(5):2467-79. PubMed ID: 1774415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.
    Slugocki C; Bosnyak D; Trainor LJ
    Hear Res; 2017 Mar; 345():30-42. PubMed ID: 28043881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The age-related changes in 40 Hz Auditory Steady-State Response and sustained Event-Related Fields to the same amplitude-modulated tones in typically developing children: A magnetoencephalography study.
    Arutiunian V; Arcara G; Buyanova I; Gomozova M; Dragoy O
    Hum Brain Mapp; 2022 Dec; 43(17):5370-5383. PubMed ID: 35833318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Stimulus Bandwidth on the Auditory Steady-State Response in Scalp- and Ear-EEG.
    Sergeeva A; Bech Christensen C; Kidmose P
    Ear Hear; 2024 May-Jun 01; 45(3):626-635. PubMed ID: 38178314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.