These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14644571)

  • 1. Identification of 6-aminochrysene photoproducts and study of the effect of a humic acid and riboflavin on its photolysis.
    Zeng K; Hwang HM; Zhang Y; Yu H
    J Photochem Photobiol B; 2003 Dec; 72(1-3):95-100. PubMed ID: 14644571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing cytotoxicity and genotoxicity in HaCaT cells caused by 6-aminochrysene and 5,6-chrysenequinone under ultraviolet A irradiation.
    Zhang Y; Hwang HM; Ekunwe S
    Environ Toxicol Chem; 2006 Jul; 25(7):1920-5. PubMed ID: 16833155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of riboflavin on the photolysis of folic acid in aqueous solution.
    Akhtar MJ; Khan MA; Ahmad I
    J Pharm Biomed Anal; 2000 Nov; 23(6):1039-44. PubMed ID: 11095306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo transformation of 5-methylbenzotriazole and 5-chlorobenzotriazole by UV irradiation: Influences of pH, salinity, metal species and humic acid.
    Liu YS; Cheng YX; Wu D; Chen QL; Ying GG
    Environ Res; 2021 Mar; 194():110678. PubMed ID: 33417911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of caffeine complexation on the photolysis of riboflavin in aqueous solution: a kinetic study.
    Ahmad I; Ahmed S; Sheraz MA; Aminuddin M; Vaid FH
    Chem Pharm Bull (Tokyo); 2009 Dec; 57(12):1363-70. PubMed ID: 19952445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of riboflavin on the phototransformation of benzo[a]pyrene.
    Zhao X; Hu X; Hwang HM
    Chemosphere; 2006 May; 63(7):1116-23. PubMed ID: 16289229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of riboflavin photoproducts on microbial activity during photosensitization of atrazine transformation.
    Glover H; Hwang HM; Zeng K
    Environ Toxicol; 2003 Dec; 18(6):361-7. PubMed ID: 14608605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-Amino-chrysene, a potent inhibitor of transferase activity in single living RTG2 cells.
    Lautier D; Salmon JM; Anthelme B; Viallet P
    J Histochem Cytochem; 1988 Jun; 36(6):685-91. PubMed ID: 3130423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions.
    Chen Y; Zhang K; Zuo Y
    Sci Total Environ; 2013 Oct; 463-464():802-9. PubMed ID: 23872181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitrate, carbonate/bicarbonate, humic acid, and H
    Kang YM; Kim MK; Zoh KD
    Chemosphere; 2018 Aug; 204():148-155. PubMed ID: 29655107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.
    Porras J; Bedoya C; Silva-Agredo J; Santamaría A; Fernández JJ; Torres-Palma RA
    Water Res; 2016 May; 94():1-9. PubMed ID: 26921708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation.
    Li K; Wang H; Cheng L; Zhu H; Wang M; Wang SL
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jun; 79(1):1-5. PubMed ID: 21419692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light regime, riboflavin, and pH effects on 2,4-D photodegradation in water.
    Harrison SK; Venkatesh R
    J Environ Sci Health B; 1999 May; 34(3):469-89. PubMed ID: 10227194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.
    Koumaki E; Mamais D; Noutsopoulos C; Nika MC; Bletsou AA; Thomaidis NS; Eftaxias A; Stratogianni G
    Chemosphere; 2015 Nov; 138():675-81. PubMed ID: 26246277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical behaviour of musk tibetene. A chemical and kinetic investigation.
    Canterino M; Marotta R; Temussi F; Zarrelli A
    Environ Sci Pollut Res Int; 2008 May; 15(3):182-7. PubMed ID: 18504835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of the humic-like material arising from the photo-transformation of L-tyrosine.
    Berto S; De Laurentiis E; Tota T; Chiavazza E; Daniele PG; Minella M; Isaia M; Brigante M; Vione D
    Sci Total Environ; 2016 Mar; 545-546():434-44. PubMed ID: 26748008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodegradation of Riboflavin under Alkaline Conditions: What Can Gas-Phase Photolysis Tell Us about What Happens in Solution?
    Wong NGK; Rhodes C; Dessent CEH
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terrestrial humic substances induce photodegradation of polysaccharides in the aquatic environment.
    Grzybowski W
    Photochem Photobiol Sci; 2009 Oct; 8(10):1361-3. PubMed ID: 19789804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolysis of riboflavin in aqueous solution: a kinetic study.
    Ahmad I; Fasihullah Q; Noor A; Ansari IA; Ali QN
    Int J Pharm; 2004 Aug; 280(1-2):199-208. PubMed ID: 15265559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products.
    Lavtižar V; van Gestel CA; Dolenc D; Trebše P
    Chemosphere; 2014 Jan; 95():408-14. PubMed ID: 24125717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.