These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 14645058)

  • 1. Stochastic model of autocrine and paracrine signals in cell culture assays.
    Batsilas L; Berezhkovskii AM; Shvartsman SY
    Biophys J; 2003 Dec; 85(6):3659-65. PubMed ID: 14645058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand accumulation in autocrine cell cultures.
    Monine MI; Berezhkovskii AM; Joslin EJ; Wiley HS; Lauffenburger DA; Shvartsman SY
    Biophys J; 2005 Apr; 88(4):2384-90. PubMed ID: 15653719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial range of autocrine signaling: modeling and computational analysis.
    Shvartsman SY; Wiley HS; Deen WM; Lauffenburger DA
    Biophys J; 2001 Oct; 81(4):1854-67. PubMed ID: 11566760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probability of autocrine ligand capture by cell-surface receptors: implications for ligand secretion measurements.
    Forsten KE; Lauffenburger DA
    J Comput Biol; 1994; 1(1):15-23. PubMed ID: 8790450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction.
    Costa MN; Radhakrishnan K; Wilson BS; Vlachos DG; Edwards JS
    PLoS One; 2009 Jul; 4(7):e6316. PubMed ID: 19626123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocrine loops with positive feedback enable context-dependent cell signaling.
    Shvartsman SY; Hagan MP; Yacoub A; Dent P; Wiley HS; Lauffenburger DA
    Am J Physiol Cell Physiol; 2002 Mar; 282(3):C545-59. PubMed ID: 11832340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational model and microfluidic platform for the investigation of paracrine and autocrine signaling in mouse embryonic stem cells.
    Ellison D; Munden A; Levchenko A
    Mol Biosyst; 2009 Sep; 5(9):1004-12. PubMed ID: 19668866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time and length scales of autocrine signals in three dimensions.
    Coppey M; Berezhkovskii AM; Sealfon SC; Shvartsman SY
    Biophys J; 2007 Sep; 93(6):1917-22. PubMed ID: 17720734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells.
    Moledina F; Clarke G; Oskooei A; Onishi K; Günther A; Zandstra PW
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3264-9. PubMed ID: 22334649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing embryonic stem cell autocrine and paracrine signaling using microfluidics.
    Przybyla L; Voldman J
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():293-315. PubMed ID: 22524217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time quantitative measurement of autocrine ligand binding indicates that autocrine loops are spatially localized.
    Lauffenburger DA; Oehrtman GT; Walker L; Wiley HS
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15368-73. PubMed ID: 9860975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete models of autocrine cell communication in epithelial layers.
    Pribyl M; Muratov CB; Shvartsman SY
    Biophys J; 2003 Jun; 84(6):3624-35. PubMed ID: 12770871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib.
    Younes M; Wu Z; Dupouy S; Lupo AM; Mourra N; Takahashi T; Fléjou JF; Trédaniel J; Régnard JF; Damotte D; Alifano M; Forgez P
    Oncotarget; 2014 Sep; 5(18):8252-69. PubMed ID: 25249545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organization of polarized cell signaling via autocrine circuits: computational model analysis.
    Maly IV; Wiley HS; Lauffenburger DA
    Biophys J; 2004 Jan; 86(1 Pt 1):10-22. PubMed ID: 14695245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of the EGF receptor autocrine system reveals cryptic regulation of cell response by ligand capture.
    DeWitt AE; Dong JY; Wiley HS; Lauffenburger DA
    J Cell Sci; 2001 Jun; 114(Pt 12):2301-13. PubMed ID: 11493669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-to-cell communication: time and length scales of ligand internalization in cultures of suspended cells.
    Berezhkovskii AM; Coppey M; Sealfon SC; Shvartsman S
    J Chem Phys; 2008 Jun; 128(22):225102. PubMed ID: 18554059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic perfusion for regulating diffusible signaling in stem cells.
    Blagovic K; Kim LY; Voldman J
    PLoS One; 2011; 6(8):e22892. PubMed ID: 21829665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand trapping in epithelial layers and cell cultures.
    Berezhkovskii AM; Batsilas L; Shvartsman SY
    Biophys Chem; 2004 Feb; 107(3):221-7. PubMed ID: 14967237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range signal transmission in autocrine relays.
    Pribyl M; Muratov CB; Shvartsman SY
    Biophys J; 2003 Feb; 84(2 Pt 1):883-96. PubMed ID: 12547771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autocrine-derived epidermal growth factor receptor ligands contribute to recruitment of tumor-associated macrophage and growth of basal breast cancer cells in vivo.
    Nickerson NK; Mill CP; Wu HJ; Riese DJ; Foley J
    Oncol Res; 2013; 20(7):303-17. PubMed ID: 23879171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.