These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14645100)

  • 1. Examination of optical depth effects on fluorescence imaging of cardiac propagation.
    Bray MA; Wikswo JP
    Biophys J; 2003 Dec; 85(6):4134-45. PubMed ID: 14645100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of depth-weighted optical signals during cardiac optical mapping: a simulation study.
    Xu Z; Zhang Z; Jin Y; Wang J
    Comput Biol Med; 2007 May; 37(5):732-8. PubMed ID: 16987506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation.
    Pop M; Sermesant M; Liu G; Relan J; Mansi T; Soong A; Peyrat JM; Truong MV; Fefer P; McVeigh ER; Delingette H; Dick AJ; Ayache N; Wright GA
    Med Image Anal; 2012 Feb; 16(2):505-23. PubMed ID: 22209561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation.
    Hyatt CJ; Zemlin CW; Smith RM; Matiukas A; Pertsov AM; Bernus O
    Opt Express; 2008 Sep; 16(18):13758-72. PubMed ID: 18772987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What can we learn from the optically recorded epicardial action potential?
    Pertsov AM; Zemlin CW; Hyatt CJ; Bernus O
    Biophys J; 2006 Nov; 91(10):3959-60. PubMed ID: 16935958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation.
    Qu Z; Kil J; Xie F; Garfinkel A; Weiss JN
    Biophys J; 2000 Jun; 78(6):2761-75. PubMed ID: 10827961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity.
    Walton RD; Bernus O
    Adv Exp Med Biol; 2015; 859():405-23. PubMed ID: 26238062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials.
    Mironov SF; Vetter FJ; Pertsov AM
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H327-35. PubMed ID: 16428336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns.
    Hyatt CJ; Mironov SF; Wellner M; Berenfeld O; Popp AK; Weitz DA; Jalife J; Pertsov AM
    Biophys J; 2003 Oct; 85(4):2673-83. PubMed ID: 14507730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of cardiac movement using ratiometric and nonratiometric optical mapping: effects of ischemia and 2, 3-butaneodione monoxime.
    Himel HD; Knisley SB
    IEEE Trans Med Imaging; 2006 Jan; 25(1):122-7. PubMed ID: 16398420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of cardiac dual calcium-voltage optical mapping.
    Walton RD; Bernus O
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2827-30. PubMed ID: 19964270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelet analysis of cardiac optical mapping data.
    Xiong F; Qi X; Nattel S; Comtois P
    Comput Biol Med; 2015 Oct; 65():243-55. PubMed ID: 26209111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase shifting prior to spatial filtering enhances optical recordings of cardiac action potential propagation.
    Sung D; Cosman JSJP ; Mills R; McCulloch AD
    Ann Biomed Eng; 2001 Oct; 29(10):854-61. PubMed ID: 11764316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epicardial fiber organization in swine right ventricle and its impact on propagation.
    Vetter FJ; Simons SB; Mironov S; Hyatt CJ; Pertsov AM
    Circ Res; 2005 Feb; 96(2):244-51. PubMed ID: 15618536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical features of a CCD video camera system to record cardiac fluorescence data.
    Baxter WT; Davidenko JM; Loew LM; Wuskell JP; Jalife J
    Ann Biomed Eng; 1997; 25(4):713-25. PubMed ID: 9236983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lenses and effective spatial resolution in macroscopic optical mapping.
    Bien H; Parikh P; Entcheva E
    Phys Med Biol; 2007 Feb; 52(4):941-60. PubMed ID: 17264363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy.
    Akar FG; Spragg DD; Tunin RS; Kass DA; Tomaselli GF
    Circ Res; 2004 Oct; 95(7):717-25. PubMed ID: 15345654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative fluorescence microscopy and image deconvolution.
    Swedlow JR
    Methods Cell Biol; 2013; 114():407-26. PubMed ID: 23931516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time computation of subdiffraction-resolution fluorescence images.
    Wolter S; Schüttpelz M; Tscherepanow M; VAN DE Linde S; Heilemann M; Sauer M
    J Microsc; 2010 Jan; 237(1):12-22. PubMed ID: 20055915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.