BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 14645481)

  • 1. Molecular basis for ultraviolet vision in invertebrates.
    Salcedo E; Zheng L; Phistry M; Bagg EE; Britt SG
    J Neurosci; 2003 Nov; 23(34):10873-8. PubMed ID: 14645481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The green-absorbing Drosophila Rh6 visual pigment contains a blue-shifting amino acid substitution that is conserved in vertebrates.
    Salcedo E; Farrell DM; Zheng L; Phistry M; Bagg EE; Britt SG
    J Biol Chem; 2009 Feb; 284(9):5717-22. PubMed ID: 19126545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision in the ultraviolet.
    Hunt DM; Wilkie SE; Bowmaker JK; Poopalasundaram S
    Cell Mol Life Sci; 2001 Oct; 58(11):1583-98. PubMed ID: 11706986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2008 Oct; 47(41):10829-33. PubMed ID: 18803408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation.
    Nakagawa M; Iwasa T; Kikkawa S; Tsuda M; Ebrey TG
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6189-92. PubMed ID: 10339563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pKa of the protonated Schiff base of visual pigments.
    Ebrey TG
    Methods Enzymol; 2000; 315():196-207. PubMed ID: 10736703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.
    Hunt DM; Cowing JA; Wilkie SE; Parry JW; Poopalasundaram S; Bowmaker JK
    Photochem Photobiol Sci; 2004 Aug; 3(8):713-20. PubMed ID: 15295625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic analysis and experimental approaches to study color vision in vertebrates.
    Yokoyama S
    Methods Enzymol; 2000; 315():312-25. PubMed ID: 10736710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins.
    Salcedo E; Huber A; Henrich S; Chadwell LV; Chou WH; Paulsen R; Britt SG
    J Neurosci; 1999 Dec; 19(24):10716-26. PubMed ID: 10594055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
    Hunt DM; Carvalho LS; Cowing JA; Parry JW; Wilkie SE; Davies WL; Bowmaker JK
    Photochem Photobiol; 2007; 83(2):303-10. PubMed ID: 17576346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments.
    Nathans J; Thomas D; Hogness DS
    Science; 1986 Apr; 232(4747):193-202. PubMed ID: 2937147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis for tetrachromatic color vision.
    Okano T; Fukada Y; Yoshizawa T
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Nov; 112(3):405-14. PubMed ID: 8529019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change.
    Yokoyama S; Radlwimmer FB; Blow NS
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7366-71. PubMed ID: 10861005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How color visual pigments are tuned.
    Kochendoerfer GG; Lin SW; Sakmar TP; Mathies RA
    Trends Biochem Sci; 1999 Aug; 24(8):300-5. PubMed ID: 10431173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments.
    Carvalho LS; Cowing JA; Wilkie SE; Bowmaker JK; Hunt DM
    Mol Biol Evol; 2007 Aug; 24(8):1843-52. PubMed ID: 17556758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian entrainment to red light in Drosophila: requirement of Rhodopsin 1 and Rhodopsin 6.
    Hanai S; Hamasaka Y; Ishida N
    Neuroreport; 2008 Sep; 19(14):1441-4. PubMed ID: 18766027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic basis of color vision.
    Haynie GD; Mukai S
    Int Ophthalmol Clin; 1993; 33(2):141-52. PubMed ID: 8325729
    [No Abstract]   [Full Text] [Related]  

  • 20. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.