These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 14645492)

  • 1. Corpus callosum deficiency in transgenic mice expressing a truncated ephrin-A receptor.
    Hu Z; Yue X; Shi G; Yue Y; Crockett DP; Blair-Flynn J; Reuhl K; Tessarollo L; Zhou R
    J Neurosci; 2003 Nov; 23(34):10963-70. PubMed ID: 14645492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography of interhemispheric connections in neocortex of mice with congenital deficiencies of the callosal commissure.
    Olavarria J; Serra-Oller MM; Yee KT; Van Sluyters RC
    J Comp Neurol; 1988 Apr; 270(4):575-90. PubMed ID: 3372749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Callosal axon guidance defects in p35(-/-) mice.
    Kwon YT; Tsai LH; Crandall JE
    J Comp Neurol; 1999 Dec; 415(2):218-29. PubMed ID: 10545161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain.
    Mendes SW; Henkemeyer M; Liebl DJ
    J Neurosci; 2006 Jan; 26(3):882-92. PubMed ID: 16421308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PlexinA1 is crucial for the midline crossing of callosal axons during corpus callosum development in BALB/cAJ mice.
    Hossain MM; Tsuzuki T; Sakakibara K; Imaizumi F; Ikegaya A; Inagaki M; Takahashi I; Ito T; Takamatsu H; Kumanogoh A; Negishi T; Yukawa K
    PLoS One; 2019; 14(8):e0221440. PubMed ID: 31430342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice.
    Hakanen J; Salminen M
    Int J Dev Neurosci; 2015 Dec; 47(Pt B):206-15. PubMed ID: 26397040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal hippocampal axon bundling in EphB receptor mutant mice.
    Chen ZY; Sun C; Reuhl K; Bergemann A; Henkemeyer M; Zhou R
    J Neurosci; 2004 Mar; 24(10):2366-74. PubMed ID: 15014111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse.
    Ozaki HS; Wahlsten D
    J Comp Neurol; 1998 Oct; 400(2):197-206. PubMed ID: 9766399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segregation and pathfinding of callosal axons through EphA3 signaling.
    Nishikimi M; Oishi K; Tabata H; Torii K; Nakajima K
    J Neurosci; 2011 Nov; 31(45):16251-60. PubMed ID: 22072676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ephrins stimulate neurite outgrowth during early cortical neurogenesis.
    Zhou X; Suh J; Cerretti DP; Zhou R; DiCicco-Bloom E
    J Neurosci Res; 2001 Dec; 66(6):1054-63. PubMed ID: 11746437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of transitory corpus callosum axons projecting to developing cat visual cortex revealed by DiI.
    Elberger AJ
    J Comp Neurol; 1993 Jul; 333(3):326-42. PubMed ID: 8349847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice.
    Piper M; Moldrich RX; Lindwall C; Little E; Barry G; Mason S; Sunn N; Kurniawan ND; Gronostajski RM; Richards LJ
    Neural Dev; 2009 Dec; 4():43. PubMed ID: 19961580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axon guidance mechanisms for establishment of callosal connections.
    Nishikimi M; Oishi K; Nakajima K
    Neural Plast; 2013; 2013():149060. PubMed ID: 23533817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inbred epilepsy-prone substrain of BALB/c mice shows absence of the corpus callosum, an abnormal projection to the basal forebrain, and bilateral projections to the thalamus.
    Morin CL; Dolina S; Robertson RT; Ribak CE
    Cereb Cortex; 1994; 4(2):119-28. PubMed ID: 8038563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth-associated protein-43 is required for commissural axon guidance in the developing vertebrate nervous system.
    Shen Y; Mani S; Donovan SL; Schwob JE; Meiri KF
    J Neurosci; 2002 Jan; 22(1):239-47. PubMed ID: 11756507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rac1 in cortical projection neurons is selectively required for midline crossing of commissural axonal formation.
    Kassai H; Terashima T; Fukaya M; Nakao K; Sakahara M; Watanabe M; Aiba A
    Eur J Neurosci; 2008 Jul; 28(2):257-67. PubMed ID: 18702697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topographic specificity within membranes of a single muscle detected in vitro.
    Chadaram SR; Laskowski MB; Madison RD
    J Neurosci; 2007 Dec; 27(51):13938-48. PubMed ID: 18094231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retarded formation of the hippocampal commissure in embryos from mouse strains lacking a corpus callosum.
    Livy DJ; Wahlsten D
    Hippocampus; 1997; 7(1):2-14. PubMed ID: 9138666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The corpus callosum provides a massive transitory input to the visual cortex of cat and rat during early postnatal development.
    Elberger AJ
    Behav Brain Res; 1994 Oct; 64(1-2):15-33. PubMed ID: 7840881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of L1 and TAG-1 in the corticospinal, callosal, and hippocampal commissural neurons in the developing rat telencephalon as revealed by retrograde and in situ hybridization double labeling.
    Fujimori KE; Takeuchi K; Yazaki T; Uyemura K; Nojyo Y; Tamamki N
    J Comp Neurol; 2000 Feb; 417(3):275-88. PubMed ID: 10683603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.