BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1464569)

  • 1. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Hear Res; 1992 Nov; 63(1-2):19-25. PubMed ID: 1464569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Eur Arch Otorhinolaryngol; 1993; 250(5):281-5. PubMed ID: 8217130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of perilymphatic oxygen tension in guinea pigs exposed to loud sound.
    Haupt H; Scheibe F; Ludwig C; Petzold D
    Eur Arch Otorhinolaryngol; 1991; 248(7):413-6. PubMed ID: 1747251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear.
    Lamm K; Arnold W
    Hear Res; 1998 Jan; 115(1-2):149-61. PubMed ID: 9472744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss and precedes reduction of cochlear blood flow.
    Lamm K; Arnold W
    Audiol Neurootol; 1996; 1(3):148-60. PubMed ID: 9390798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of experimental cochlear thrombosis on oxygenation and auditory function of the inner ear.
    Scheibe F; Haupt H; Baumgärtl H
    Eur Arch Otorhinolaryngol; 1997; 254(2):91-4. PubMed ID: 9065663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of acoustic overstimulation of 2F1-F2 distortion product in cochlear microphonics].
    Yoshida M; Aoyagi M; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1994 Apr; 97(4):680-3. PubMed ID: 8189316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Simultaneous determinations of oxygen partial pressure in the scala tympani, electrocochleography and blood pressure measurements in noise stress in guinea pigs].
    Lamm K; Lamm C; Lamm H; Schumann K
    HNO; 1988 Sep; 36(9):367-72. PubMed ID: 3170282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear.
    Lamm K; Arnold W
    Hear Res; 2000 Mar; 141(1-2):199-219. PubMed ID: 10713508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does loud sound influence the intracochlear oxygen tension?
    Nuttall AL; Hultcrantz E; Lawrence M
    Hear Res; 1981 Nov; 5(2-3):285-93. PubMed ID: 7309643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in cochlear oxygenation, microcirculation and auditory function during prolonged general hypoxia.
    Haupt H; Scheibe F; Ludwig C
    Eur Arch Otorhinolaryngol; 1993; 250(7):396-400. PubMed ID: 8286104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of increasing perilymph calcium levels on various cochlear potentials].
    Hu L; Dong W; Chen J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 May; 13(2):128-30. PubMed ID: 10074232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of low-frequency ultrasound on the inner ear: an electrophysiological study using the guinea pig cochlea.
    Ishida A; Matsui T; Yamamura K
    Eur Arch Otorhinolaryngol; 1993; 250(1):22-6. PubMed ID: 8466746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of various noise exposures on endocochlear potentials correlated with cochlear gross responses.
    Wang J; Li Q; Dong W; Chen J
    Hear Res; 1992 Apr; 59(1):31-8. PubMed ID: 1629044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of tone exposure on the inner ear functions in the guinea pig: impact tone vs. steady state tone.
    Inada N; Hotta S; Itoh T; Yamamura K
    Tohoku J Exp Med; 1999 Jun; 188(2):161-75. PubMed ID: 10526878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects on cochlear microphonics in guinea pigs induced by prolonged exposure to low-frequency sound.
    Maehara N; Sadamoto T; Yamamura K
    Eur J Appl Physiol Occup Physiol; 1984; 52(3):305-9. PubMed ID: 6539683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acoustic overstimulation on 2f1-f2 distortion product in the cochlear microphonics.
    Yoshida M; Aoyagi M; Makishima K
    Hear Res; 1995 Jan; 82(1):59-64. PubMed ID: 7744714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of 6 kHz tone exposure on inner ear function of the guinea pig: relation to changes in cochlear microphonics, action potential, endocochlear potential and chemical potentials of K(+)-ions and Na(+)-ions, using a double-barrel glass electrode.
    Sugisawa T; Ishida A; Hotta S; Yamamura K
    Eur Arch Otorhinolaryngol; 1994; 251(3):154-9. PubMed ID: 8080634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prophylactic effect of Ca2+ -deficient artificial perilymph perfusion on noise-induced hearing loss.
    Li X; Yu N; Sun J; Zhao L
    Chin Med J (Engl); 2003 Mar; 116(3):440-3. PubMed ID: 12781055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of endocochlear potential suppression upon susceptibility to acoustic trauma.
    Kanno H; Ohtani I; Hara A; Kusakari J
    Acta Otolaryngol; 1993 Jan; 113(1):26-30. PubMed ID: 8442418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.