These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14645717)

  • 1. Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation.
    Banerjee IA; Yu L; Matsui H
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14678-82. PubMed ID: 14645717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates.
    Djalali R; Chen YF; Matsui H
    J Am Chem Soc; 2003 May; 125(19):5873-9. PubMed ID: 12733928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au nanowire fabrication from sequenced histidine-rich peptide.
    Djalali R; Chen YF; Matsui H
    J Am Chem Soc; 2002 Nov; 124(46):13660-1. PubMed ID: 12431080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct growth of shape-controlled nanocrystals on nanotubes via biological recognition.
    Yu L; Banerjee IA; Matsui H
    J Am Chem Soc; 2003 Dec; 125(48):14837-40. PubMed ID: 14640660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineralization of semiconductor nanocrystals on peptide-coated bionanotubes and their pH-dependent morphology changes.
    Banerjee IA; Muniz G; Lee SY; Matsui H
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2287-92. PubMed ID: 17663242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the metal binding properties of a histidine-rich fusogenic peptide by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Sinz A; Jin AJ; Zschörnig O
    J Mass Spectrom; 2003 Nov; 38(11):1150-9. PubMed ID: 14648822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes.
    Chen ZG; Zou J; Liu Q; Sun C; Liu G; Yao X; Li F; Wu B; Yuan XL; Sekiguchi T; Cheng HM; Lu GQ
    ACS Nano; 2008 Aug; 2(8):1523-32. PubMed ID: 19206355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doughnut-shaped peptide nano-assemblies and their applications as nanoreactors.
    Djalali R; Samson J; Matsui H
    J Am Chem Soc; 2004 Jun; 126(25):7935-9. PubMed ID: 15212542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper(II) ion selective and strong acid-tolerable hydrogels formed by an L-histidine ester terminated bolaamphiphile: from single molecular thick nanofibers to single-wall nanotubes.
    Liu Y; Wang T; Li Z; Liu M
    Chem Commun (Camb); 2013 May; 49(42):4767-9. PubMed ID: 23589838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein.
    Jones CE; Abdelraheim SR; Brown DR; Viles JH
    J Biol Chem; 2004 Jul; 279(31):32018-27. PubMed ID: 15145944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein.
    Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H
    J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled patterning of aligned self-assembled peptide nanotubes.
    Reches M; Gazit E
    Nat Nanotechnol; 2006 Dec; 1(3):195-200. PubMed ID: 18654186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR studies on Cu(II)-peptide complexes: exchange kinetics and determination of structures in solution.
    Gaggelli E; Kozlowski H; Valensin D; Valensin G
    Mol Biosyst; 2005 May; 1(1):79-84. PubMed ID: 16880967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-ion induced transition from multi- to single-bilayer tubes in histidine bearing lipids and formation of monodisperse Au nanoparticles.
    Nishimura T; Matsuo T; Sakurai K
    Phys Chem Chem Phys; 2011 Sep; 13(35):15899-905. PubMed ID: 21829827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor.
    Aravinda CL; Cosnier S; Chen W; Myung NV; Mulchandani A
    Biosens Bioelectron; 2009 Jan; 24(5):1451-5. PubMed ID: 18930385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu²⁺ sequestration by amine-functionalized silica nanotubes.
    Ko YG; Lee HJ; Oh HC; Choi US
    J Hazard Mater; 2013 Sep; 260():489-97. PubMed ID: 23811371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide.
    Mereuta L; Schiopu I; Asandei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2012 Dec; 28(49):17079-91. PubMed ID: 23140333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper(II) partially protects three histidine residues and the N-terminus of amyloid-β peptide from diethyl pyrocarbonate (DEPC) modification.
    Friedemann M; Tõugu V; Palumaa P
    FEBS Open Bio; 2020 Jun; 10(6):1072-1081. PubMed ID: 32255544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.