BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 14645727)

  • 1. T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences.
    Windels P; De Buck S; Van Bockstaele E; De Loose M; Depicker A
    Plant Physiol; 2003 Dec; 133(4):2061-8. PubMed ID: 14645727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells.
    Salomon S; Puchta H
    EMBO J; 1998 Oct; 17(20):6086-95. PubMed ID: 9774352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and Arabidopsis.
    Lloyd AH; Wang D; Timmis JN
    PLoS One; 2012; 7(2):e32255. PubMed ID: 22389691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration.
    Hu Y; Chen Z; Zhuang C; Huang J
    Plant J; 2017 Jun; 90(5):954-965. PubMed ID: 28244154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant DNA Repair and
    Gelvin SB
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445162
    [No Abstract]   [Full Text] [Related]  

  • 6. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration.
    De Buck S; Jacobs A; Van Montagu M; Depicker A
    Plant J; 1999 Nov; 20(3):295-304. PubMed ID: 10571890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Structural Features of Thousands of T-DNA Insertion Sites Are Consistent with a Double-Strand Break Repair-Based Insertion Mechanism.
    Kleinboelting N; Huep G; Appelhagen I; Viehoever P; Li Y; Weisshaar B
    Mol Plant; 2015 Nov; 8(11):1651-64. PubMed ID: 26343971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration.
    Kumar S; Fladung M
    Plant J; 2002 Aug; 31(4):543-51. PubMed ID: 12182710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration.
    Chilton MD; Que Q
    Plant Physiol; 2003 Nov; 133(3):956-65. PubMed ID: 14551336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Arabidopsis Ku80 deletion on the integration of the left border of T-DNA into plant chromosomal DNA via Agrobacterium tumefaciens.
    Yoshihara R; Mitomi Y; Okada M; Shibata H; Tanokami M; Nakajima Y; Inui H; Oono Y; Furudate H; Tanaka S
    Genes Genet Syst; 2020 Oct; 95(4):173-182. PubMed ID: 32848122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Illegitimate recombination in plants: a model for T-DNA integration.
    Gheysen G; Villarroel R; Van Montagu M
    Genes Dev; 1991 Feb; 5(2):287-97. PubMed ID: 1995418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome.
    Forsbach A; Schubert D; Lechtenberg B; Gils M; Schmidt R
    Plant Mol Biol; 2003 May; 52(1):161-76. PubMed ID: 12825697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates.
    Tzfira T; Frankman LR; Vaidya M; Citovsky V
    Plant Physiol; 2003 Nov; 133(3):1011-23. PubMed ID: 14551323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-DNA integration in plants results from polymerase-θ-mediated DNA repair.
    van Kregten M; de Pater S; Romeijn R; van Schendel R; Hooykaas PJ; Tijsterman M
    Nat Plants; 2016 Oct; 2(11):16164. PubMed ID: 27797358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flanking sequence tags in Arabidopsis thaliana T-DNA insertion lines: a pilot study.
    Ortega D; Raynal M; Laudié M; Llauro C; Cooke R; Devic M; Genestier S; Picard G; Abad P; Contard P; Sarrobert C; Nussaume L; Bechtold N; Horlow C; Pelletier G; Delseny M
    C R Biol; 2002 Jul; 325(7):773-80. PubMed ID: 12360845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions.
    Schneeberger RG; Zhang K; Tatarinova T; Troukhan M; Kwok SF; Drais J; Klinger K; Orejudos F; Macy K; Bhakta A; Burns J; Subramanian G; Donson J; Flavell R; Feldmann KA
    Funct Integr Genomics; 2005 Oct; 5(4):240-53. PubMed ID: 15744539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-specific double-strand break repair and genome evolution in plants.
    Kirik A; Salomon S; Puchta H
    EMBO J; 2000 Oct; 19(20):5562-6. PubMed ID: 11032823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca.
    Oosumi T; Ruiz-Rojas JJ; Veilleux RE; Dickerman A; Shulaev V
    Physiol Plant; 2010 Sep; 140(1):1-9. PubMed ID: 20444194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of T-DNA integration events in transgenic rice.
    Gong W; Zhou Y; Wang R; Wei X; Zhang L; Dai Y; Zhu Z
    J Plant Physiol; 2021 Nov; 266():153527. PubMed ID: 34563791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions.
    Gorbunova V; Levy AA
    Nucleic Acids Res; 1997 Nov; 25(22):4650-7. PubMed ID: 9358178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.