These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1464578)

  • 1. The effects of moderate cooling on gross cochlear potentials in the gerbil: basal and apical differences.
    Ohlemiller KK; Siegel JH
    Hear Res; 1992 Nov; 63(1-2):79-89. PubMed ID: 1464578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers.
    Ohlemiller KK; Siegel JH
    Hear Res; 1994 Nov; 80(2):174-90. PubMed ID: 7896576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The temperature dependency of neural and hair cell responses evoked by high frequencies.
    Brown MC; Smith DI; Nuttall AL
    J Acoust Soc Am; 1983 May; 73(5):1662-70. PubMed ID: 6863743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of cochlear potentials in the neonatal gerbil.
    McGuirt JP; Schmiedt RA; Schulte BA
    Hear Res; 1995 Apr; 84(1-2):52-60. PubMed ID: 7642455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acoustic trauma on the cochlear potentials.
    Gans DP
    J Acoust Soc Am; 1983 Dec; 74(6):1742-6. PubMed ID: 6655132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that inner hair cells are the major source of cochlear summating potentials.
    Zheng XY; Ding DL; McFadden SL; Henderson D
    Hear Res; 1997 Nov; 113(1-2):76-88. PubMed ID: 9387987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological properties of cochlear implantation in the gerbil using a flexible array.
    DeMason C; Choudhury B; Ahmad F; Fitzpatrick DC; Wang J; Buchman CA; Adunka OF
    Ear Hear; 2012; 33(4):534-42. PubMed ID: 22436408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of cochlear potentials by chemical asphyxiants. Cyanide and carbon monoxide.
    Tawackoli W; Chen GD; Fechter LD
    Neurotoxicol Teratol; 2001; 23(2):157-65. PubMed ID: 11348833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of various noise exposures on endocochlear potentials correlated with cochlear gross responses.
    Wang J; Li Q; Dong W; Chen J
    Hear Res; 1992 Apr; 59(1):31-8. PubMed ID: 1629044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of endocochlear potential and compound action potential in the rat.
    Rybak LP; Whitworth C; Scott V
    Hear Res; 1992 May; 59(2):189-94. PubMed ID: 1319988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of endocochlear potential generation by stria vascularis.
    Salt AN; Melichar I; Thalmann R
    Laryngoscope; 1987 Aug; 97(8 Pt 1):984-91. PubMed ID: 3613802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for introducing non-silencing siRNA into the guinea pig cochlea in vivo.
    Sellick P; Layton MG; Rodger J; Robertson D
    J Neurosci Methods; 2008 Jan; 167(2):237-45. PubMed ID: 17945347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitroprusside suppresses cochlear potentials and outer hair cell responses.
    Chen C; Nenov A; Skellett R; Fallon M; Bright L; Norris CH; Bobbin RP
    Hear Res; 1995 Jul; 87(1-2):1-8. PubMed ID: 8567427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear mechanisms of frequency and intensity coding. I. The place code for pitch.
    Chatterjee M; Zwislocki JJ
    Hear Res; 1997 Sep; 111(1-2):65-75. PubMed ID: 9307312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear perfusion with a viscous fluid.
    Wang Y; Olson ES
    Hear Res; 2016 Jul; 337():1-11. PubMed ID: 27220484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Functional and morphological changes of the cochlea in guinea pigs during anoxia].
    Ding DL
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1993; 28(5):265-7, 313. PubMed ID: 8192926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.
    Bergin MJ; Bird PA; Vlajkovic SM; Thorne PR
    Hear Res; 2015 Dec; 330(Pt A):147-54. PubMed ID: 26493491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient changes in cochlear potentials and DPOAEs after low-frequency tones: the 'two-minute bounce' revisited.
    Kirk DL; Patuzzi RB
    Hear Res; 1997 Oct; 112(1-2):49-68. PubMed ID: 9367229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of low-frequency ultrasound on the inner ear: an electrophysiological study using the guinea pig cochlea.
    Ishida A; Matsui T; Yamamura K
    Eur Arch Otorhinolaryngol; 1993; 250(1):22-6. PubMed ID: 8466746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of auditory function in the cochlea of the mongolian gerbil.
    Woolf NK; Ryan AF
    Hear Res; 1984 Mar; 13(3):277-83. PubMed ID: 6735934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.