BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 14646049)

  • 1. Evaluation of dynamic visco-elastic properties during cartilage regenerating process in vitro.
    Morita Y; Tomita N; Aoki H; Wakitani S; Tamada Y; Suguro T; Ikeuchi K
    Biomed Mater Eng; 2003; 13(4):345-53. PubMed ID: 14646049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visco-elastic properties of cartilage tissue regenerated with fibroin sponge.
    Morita Y; Tomita N; Aoki H; Wakitani S; Tamada Y; Suguro T; Ikeuchi K
    Biomed Mater Eng; 2002; 12(3):291-8. PubMed ID: 12446944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading.
    Miyata S; Tateishi T; Ushida T
    J Biomech Eng; 2008 Oct; 130(5):051016. PubMed ID: 19045523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frictional properties of regenerated cartilage in vitro.
    Morita Y; Tomita N; Aoki H; Sonobe M; Wakitani S; Tamada Y; Suguro T; Ikeuchi K
    J Biomech; 2006; 39(1):103-9. PubMed ID: 16271593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culture of chondrocytes in fibroin-hydrogel sponge.
    Aoki H; Tomita N; Morita Y; Hattori K; Harada Y; Sonobe M; Wakitani S; Tamada Y
    Biomed Mater Eng; 2003; 13(4):309-16. PubMed ID: 14646046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds.
    Kisiday JD; Jin M; DiMicco MA; Kurz B; Grodzinsky AJ
    J Biomech; 2004 May; 37(5):595-604. PubMed ID: 15046988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage.
    Waldman SD; Grynpas MD; Pilliar RM; Kandel RA
    J Orthop Res; 2003 Jan; 21(1):132-8. PubMed ID: 12507590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading.
    Ramage L; Nuki G; Salter DM
    Scand J Med Sci Sports; 2009 Aug; 19(4):457-69. PubMed ID: 19538538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanobiology, chondrocyte and cartilage.
    Huselstein C; Netter P; de Isla N; Wang Y; Gillet P; Decot V; Muller S; Bensoussan D; Stoltz JF
    Biomed Mater Eng; 2008; 18(4-5):213-20. PubMed ID: 19065024
    [No Abstract]   [Full Text] [Related]  

  • 13. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment.
    Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R
    Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading.
    Candrian C; Vonwil D; Barbero A; Bonacina E; Miot S; Farhadi J; Wirz D; Dickinson S; Hollander A; Jakob M; Li Z; Alini M; Heberer M; Martin I
    Arthritis Rheum; 2008 Jan; 58(1):197-208. PubMed ID: 18163475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffold-free cartilage by rotational culture for tissue engineering.
    Furukawa KS; Imura K; Tateishi T; Ushida T
    J Biotechnol; 2008 Jan; 133(1):134-45. PubMed ID: 17913274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization.
    Guilak F; Alexopoulos LG; Haider MA; Ting-Beall HP; Setton LA
    Ann Biomed Eng; 2005 Oct; 33(10):1312-8. PubMed ID: 16240080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive properties of cartilage-like tissues repaired in vivo with scaffold-free, tissue engineered constructs.
    Katakai D; Imura M; Ando W; Tateishi K; Yoshikawa H; Nakamura N; Fujie H
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):110-6. PubMed ID: 18990475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solute convection in dynamically compressed cartilage.
    Evans RC; Quinn TM
    J Biomech; 2006; 39(6):1048-55. PubMed ID: 16549095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.