These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 14646262)

  • 1. Lower extremity function in terms of shock absorption when landing with unsynchronized feet.
    Maeda A; Shima N; Nishizono H; Kurata H; Higuchi S; Motohashi Y
    J Physiol Anthropol Appl Human Sci; 2003 Nov; 22(6):279-83. PubMed ID: 14646262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of landing on the supination and pronation in the foot joint.
    Maeda A; Ebashi H; Nishizono H; Shibayama H; Tanaka M
    J Hum Ergol (Tokyo); 1998 Dec; 27(1-2):1-8. PubMed ID: 11579694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directions of single-leg landing affect multi-segment foot kinematics and dynamic postural stability in male collegiate soccer athletes.
    Kunugi S; Koumura T; Myotsuzono R; Masunari A; Yoshida N; Miyakawa S; Mukai N
    Gait Posture; 2020 Jul; 80():285-291. PubMed ID: 32570194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks.
    Pappas E; Carpes FP
    J Sci Med Sport; 2012 Jan; 15(1):87-92. PubMed ID: 21925949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower limb kinematic variability in dancers performing drop landings onto floor surfaces with varied mechanical properties.
    Reeve HK; Hopper LS; Elliott BC; Ackland TR
    Hum Mov Sci; 2013 Aug; 32(4):866-74. PubMed ID: 23993251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex differences in lower extremity biomechanics during single leg landings.
    Schmitz RJ; Kulas AS; Perrin DH; Riemann BL; Shultz SJ
    Clin Biomech (Bristol, Avon); 2007 Jul; 22(6):681-8. PubMed ID: 17499896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the lower extremities during drop landings from three heights.
    McNitt-Gray JL
    J Biomech; 1993 Sep; 26(9):1037-46. PubMed ID: 8408086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of the Midfoot in Drop Landings.
    Olsen MT; Bruening DA; Johnson AW; Ridge ST
    Med Sci Sports Exerc; 2019 Jan; 51(1):114-122. PubMed ID: 30138220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing.
    Lee J; Song Y; Shin CS
    Gait Posture; 2018 May; 62():99-104. PubMed ID: 29544157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.
    Chinnasee C; Weir G; Sasimontonkul S; Alderson J; Donnelly C
    Int J Sports Med; 2018 Jul; 39(8):636-645. PubMed ID: 29902807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hip-abductor fatigue influences sagittal plane ankle kinematics and shank muscle activity during a single-leg forward jump.
    Gafner SC; Hoevel V; Punt IM; Schmid S; Armand S; Allet L
    J Electromyogr Kinesiol; 2018 Dec; 43():75-81. PubMed ID: 30243233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of lower extremity fatigue on shock attenuation during single-leg landing.
    Coventry E; O'Connor KM; Hart BA; Earl JE; Ebersole KT
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1090-7. PubMed ID: 16949185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of unipodal and bipodal counter movement jump landings in a recreational male population.
    Schwartz C; Forthomme B; Paulus J; Kaux JF; Brüls O; Denoël V; Croisier JL
    Eur J Sport Sci; 2017 Oct; 17(9):1143-1152. PubMed ID: 28780886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of impact forces, accelerations and ankle range of motion in surfing-related landing tasks.
    Lundgren LE; Tran TT; Nimphius S; Raymond E; Secomb JL; Farley OR; Newton RU; Sheppard JM
    J Sports Sci; 2016; 34(11):1051-7. PubMed ID: 26383823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing.
    Tamura A; Akasaka K; Otsudo T; Shiozawa J; Toda Y; Yamada K
    PLoS One; 2017; 12(6):e0179810. PubMed ID: 28632776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control of timing and amplitude of EMG activity in landing movements in humans.
    Santello M; McDonagh MJ
    Exp Physiol; 1998 Nov; 83(6):857-74. PubMed ID: 9782194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of decision making on landing mechanics as a function of task and sex.
    Mache MA; Hoffman MA; Hannigan K; Golden GM; Pavol MJ
    Clin Biomech (Bristol, Avon); 2013 Jan; 28(1):104-9. PubMed ID: 23121775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromechanical synergies in single-leg landing reveal changes in movement control.
    Nordin AD; Dufek JS
    Hum Mov Sci; 2016 Oct; 49():66-78. PubMed ID: 27341613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toe-in Landing Increases the Ankle Inversion Angle and Moment During Single-Leg Landing: Implications in the Prevention of Lateral Ankle Sprains.
    Koshino Y; Ishida T; Yamanaka M; Samukawa M; Kobayashi T; Tohyama H
    J Sport Rehabil; 2017 Nov; 26(6):530-535. PubMed ID: 27992246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influences of sex and posture on joint energetics during drop landings.
    Norcross MF; Shultz SJ; Weinhold PS; Lewek MD; Padua DA; Blackburn JT
    Scand J Med Sci Sports; 2015 Apr; 25(2):e166-75. PubMed ID: 24995548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.