BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 14646815)

  • 61. Cell death in developing human spinal cord.
    Vilović K; Ilijić E; Glamoclija V; Kolić K; Bocina I; Sapunar D; Saraga-Babić M
    Anat Embryol (Berl); 2006 Jan; 211(1):1-9. PubMed ID: 16315061
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of noggin as an upstream signal in the lack of neuronal derivatives found in the avian caudal-most neural crest.
    Osório L; Teillet MA; Catala M
    Development; 2009 May; 136(10):1717-26. PubMed ID: 19369402
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A proliferative role for Wnt-3a in chick somites.
    Galli LM; Willert K; Nusse R; Yablonka-Reuveni Z; Nohno T; Denetclaw W; Burrus LW
    Dev Biol; 2004 May; 269(2):489-504. PubMed ID: 15110715
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Association between the development of the body axis and the craniofacial skeleton studied by immunohistochemical analyses using collagen II, Pax9, Pax1, and Noggin antibodies.
    Sonnesen L; Nolting D; Kjaer KW; Kjaer I
    Spine (Phila Pa 1976); 2008 Jul; 33(15):1622-6. PubMed ID: 18594453
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Retinoic acid and the control of dorsoventral patterning in the avian spinal cord.
    Wilson L; Gale E; Chambers D; Maden M
    Dev Biol; 2004 May; 269(2):433-46. PubMed ID: 15110711
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The Pediatric Posterior Fossa: an Embryologist's View.
    Catala M; Morgand C
    Neuroradiol J; 2007 Aug; 20(4):399-402. PubMed ID: 24299698
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Expression pattern of VEGFR-2 (Quek1) during quail development.
    Nimmagadda S; Loganathan PG; Wilting J; Christ B; Huang R
    Anat Embryol (Berl); 2004 Jun; 208(3):219-24. PubMed ID: 15156402
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The genetics and embryology of zebrafish metamerism.
    Holley SA
    Dev Dyn; 2007 Jun; 236(6):1422-49. PubMed ID: 17486630
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The central nervous system of the ascidian larva: mitotic history of cells forming the neural tube in late embryonic Ciona intestinalis.
    Cole AG; Meinertzhagen IA
    Dev Biol; 2004 Jul; 271(2):239-62. PubMed ID: 15223332
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vitro induction of cartilage in mouse somite mesoderm by embryonic spinal cord.
    GROBSTEIN C; PARKER G
    Proc Soc Exp Biol Med; 1954 Mar; 85(3):477-81. PubMed ID: 13167111
    [No Abstract]   [Full Text] [Related]  

  • 72. Molecular characterization of the rostral-most somites in early somitic stages of the chick embryo.
    Rodrigues S; Santos J; Palmeirim I
    Gene Expr Patterns; 2006 Oct; 6(7):673-7. PubMed ID: 16488196
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Developmentally regulated expression of the LRRTM gene family during mid-gestation mouse embryogenesis.
    Haines BP; Rigby PW
    Gene Expr Patterns; 2007 Jan; 7(1-2):23-9. PubMed ID: 16860615
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Resegmentation is an ancestral feature of the gnathostome vertebral skeleton.
    Criswell KE; Gillis JA
    Elife; 2020 Feb; 9():. PubMed ID: 32091389
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Embryology of neural tube development.
    Sadler TW
    Am J Med Genet C Semin Med Genet; 2005 May; 135C(1):2-8. PubMed ID: 15806586
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dorsally derived netrin 1 provides an inhibitory cue and elaborates the 'waiting period' for primary sensory axons in the developing spinal cord.
    Watanabe K; Tamamaki N; Furuta T; Ackerman SL; Ikenaka K; Ono K
    Development; 2006 Apr; 133(7):1379-87. PubMed ID: 16510500
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae.
    Economides KD; Zeltser L; Capecchi MR
    Dev Biol; 2003 Apr; 256(2):317-30. PubMed ID: 12679105
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The structure and development of avian lumbosacral specializations of the vertebral canal and the spinal cord with special reference to a possible function as a sense organ of equilibrium.
    Necker R
    Anat Embryol (Berl); 2005 Aug; 210(1):59-74. PubMed ID: 16034609
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Neurosurgical embryology. Part 8: Post-natal angiogenesis and remodeling].
    Kubis N; Checoury A; Tedgui A; Lévy BI
    Neurochirurgie; 2003 Nov; 49(5):511-7. PubMed ID: 14646816
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling.
    Misra K; Matise MP
    Dev Biol; 2010 Jan; 337(1):74-83. PubMed ID: 19850029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.